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Notation

N set of natural numbers without 0
Z set of integers

i, j, k, `, n, d, e ∈ N natural numbers
f, g polynomial functions

p and q prime resp. prime power
M matrix of a given dimension over a given field
mi,j defines the entry in the i-th row and j-th column of the matrix M

1 or id neutral element of multiplication
In identity matrix
µa minimal polynomial of a

G a group
|G| order of the group G

N ≤ G N is subgroup of G
N EG N is normal subgroup of G
G ∼= H the groups, resp. fields, G and H are isomorphic
〈X〉 the smallest group, resp. field, containing the elements in X
〈X〉H the smallest normal subgroup of H containing the elements in X

ϕ, φ, ψ, χ homomorphisms between groups or fields
aπ, ϕ(x) application of π, resp. ϕ, to a, resp. x
Ker(φ) the kernel of the homomorphism φ
Im(φ) the image of the homomorphism φ
G/N the quotient group of G and the normal subgroup N

det(M) determinant of the matrix M
tr(α) field trace of α
ω primitive element of a group
x Frobenius homomorphism
x̃ natural representation of x ∈ GF(p) in N

{X|R} presentation on the generators X with relators R
〈X|R〉 group presented by the presentation {X|R}

GF(q) Galois field of order q
GL(n, q) general linear group: group of invertible

n× n matrices over the field GF(q)
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Contents

Sn symmetric group on the set {1, . . . , n}
Hn hyperoctahedral group: group of signed permutations
SHn signed permutation group: group of signed permutation matrices

of determinant 1
SL(n, q) special linear group of degree n over the field GF(q)

PSL(n, q) projective special linear group
GU(n, q) general unitary group of degree n over the field GF(q2)
SU(n, q) special unitary group

PSU(n, q) projective special unitary group
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1. Introduction

This thesis lists short presentations for some finite classical and related groups on
standard generators. These presentations can be used to verify isomorphisms of a
given group algorithmically and every presentation given in this work is implemented
in GAP. I follow the approach used by C.R. Leedham-Green and E.A. O’Brien in
[LGOB19].

The obtained results are applied in the matrix group recognition project (see [Lee01]),
which is a project in computational group theory. It aims to analyse a given matrix
group G over a finite field and to algorithmically determine information about it. Some
points of interest are the size of the group G, the membership of elements, and solving
the word problem. One goal of this project is to check isomorphisms between subgroups
of G and finite classical and related groups which can be done using presentations.

[LGOB19] defines standard generators for all finite classical groups and related sim-
ple groups. For a given group G there exist efficient constructive recognition algorithms
which can be used to compute the standard generators of G. For that reason, our pre-
sentations are also defined on those standard generators which are listed in [LGOB09].

Since we want to verify the isomorphisms automatically (e.g. using GAP), we need
to make sure that the performance of our algorithms is acceptable. It is crucial to make
sure that even matrix groups, whose matrices are high dimensional, can be verified in
reasonable time on today’s computer centres. To achieve that goal, the number of ma-
trix multiplications needs to be minimised. Additionally, to avoid memory problems,
the number of stored large matrices shall be as small as possible.

A first approach tries to optimise the presentations from a mathematical point of
view. Its goal is to minimise the number of generators and relations of the presen-
tations. To measure the length of presentations numerically, we define the bit-length
of a presentation (see Definition 20) which counts the number of generators and the
number of multiplications in the relations. Leedham-Green and O’Brien have obtained
the following result.

Theorem 1. Every classical group of rank r defined over GF(q) has a presentation
on its standard generators with O(r) relations and total bit-length O(r + log q).

All the presentations listed in this work have a bit-length smaller or equal O(r+ log q)
and hence we call them short.

The second approach is to optimise the implementation of those presentations. We
can store products of matrices that are needed in several relations to avoid recalcula-
tion. On the other hand, it is important not to store too many products, because this
might cause memory problems. This problem is addressed in Chapter 7.
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1. Introduction

In Chapter 2, I define everything that is needed to understand the results listed in
the following chapters. This includes frequently used notation, the finite classical and
related groups and presentations. Then I observe the symmetric group (Chapter 3),
the group of signed permutation matrices (Chapter 4), the special linear group of
degree 2 (Chapter 5) and the special unitary group of degree 3 (Chapter 6). For
each, I list the standard generators of the group and presentations on those standard
generators. Additionally, presentations for the projective groups are specified. My
implementation is presented in Chapter 7. Note that the code is written in GAP and
publicly available (see [GAP] and [Ahr]).

1.1. Matrix Group Recognition Project

To further motivate the results of this paper, I want to give some more prospects of
the matrix group recognition project which is extracted from [OBr19].

Let n and q be natural numbers such that GL(n, q) is the general linear group of
matrices of dimension n over the Galois field GF(q). Further G ≤ GL(n, q) is the
matrix group generated by M1, . . . ,Mk.

In this context, we say that we can solve the word problem for a group G :=
〈M1, . . . ,Mk〉 if we can write any given element M ∈ G as a product of the ma-
trices M1, . . . ,Mk. Furthermore, an epimorphism ϕ : G→ H is called a reduction if ϕ
is explicitely computable (which means that a computer can compute function values
and preimages) and if H is smaller than G. Here, we call H smaller if we can either
solve the word problem directly in H or it can be solved in fewer steps than in G.

The Composition Tree algorithm constructs a composition tree for the group G. This
is done by randomised constructive recognition algorithms that search for reductions
ϕ : G → H. Simultaneously, homomorphisms ι : G → N are constructed where
N is the kernel of ϕ. The algorithm continues recursively on H and N and builds
a Composition Tree until the word problem is solved in all leafs of this tree (see
Figure 1.1). Note that G/N ∼= H. If we can solve the word problem in N and H, then
we can also solve it in G. Having solved the word problem in G, we can obtain all the
desired information about the group.

Since the algorithms are randomised, we have to verify the results of the constructive
recognition algorithms. Since we know the properties of the leafs (e.g. the isomorphism
types), we construct a presentation for the whole group G using presentations for the
leaf groups. The presentations obtained in the next chapters can be used for this
purpose.
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1.1. Matrix Group Recognition Project

Figure 1.1.: Examplary Composition Tree of the group G.
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2. Mathematical Background

In this chapter we establish notation, give basic definitions and prove a few theorems
that should be observed independently from the work in the following chapters. Sec-
tion 2.1 lists definitions and theorems. To understand the general ideas underpinning
this work it is essential to be familiar with the mathematical background outlined in
Section 2.2.

2.1. Definitions and General Theorems

Here we define some notation which is frequently used in the following chapters.

Definition 2 (Normal Closure, [HEO05], page 14). Let G be a group and R ⊆ G a
subset of G. Then the normal closure of R in G, which will be written as 〈R〉G, is
defined as the intersection of all normal subgroups N of G containing R. We set

〈R〉G :=
⋂

NEG, R⊆N
N.

Theorem 3 (Inner Semidirect Product, [Hup67], page 89). Let G be a group with two
subgroups N,U ≤ G such that G = NU , N EG and U ∩N = {1}. Then the following
holds:

(1) For every element g ∈ G there exist a unique n ∈ N and an element u ∈ U such
that g = nu.

(2) For n1, n2 ∈ N and u1, u2 ∈ U we have (n1u1)(n2u2) = (n1n
u−1
1

2 )(u1u2) with

n1n
u−1
1

2 ∈ N and u1u2 ∈ U .

Then we write G := NU = N o U and call G a semidirect product of N with U .

Related to the inner semidirect product is the outer semidirect product, which is
given for completeness.

Definition 4 (Outer Semidirect Product, [Hup67], page 89). Let H and K be groups
and φ : K ×H → K : (k, h) 7→ kh an action of H on K, such that for every h ∈ H
the function (·, h)φ is an automorphism of K. We define

G := {(k, h) | k ∈ K,h ∈ H}

with
(k1, h1)(k2, h2) = (k1(k2, h1)φ, h1h2)

7



2. Mathematical Background

for all k1, k2 ∈ K and h1, h2 ∈ H. Then G is a group with the above defined multi-
plication and we write G := K oH and call it the outer semidirect product of K
with H.

Note that {id} × H ≤ K o H is a subgroup and K × {id} E K o H is a normal
subgroup of the outer direct product K oH with the notation in Definition 4. Thus
those groups form an inner direct product of K oH.

Definition 5 (Permutation Group, [Ker71], page 5). A permutation group G on Ω
is a subgroup of the symmetric group S(Ω).

A similar concept is the wreath product.

Definition 6 (Wreath Product, [Hup67], page 95). Let G be a group and H a permu-
tation group on Ω. Then the wreath product G oH of G with H is the set

{(f, π) | π ∈ H, f : Ω→ G}

with the multiplication

(f1, π1)(f2, π2) = (g, π1π2)

where g(i) = f1(i)f2(iπ1) for i ∈ Ω.

Now we list and prove a few theorems, which will be needed later. Note that they
are very general and could be helpful in many different proofs.

Theorem 7. Let G and H be finite groups, ϕ : G � H an epimorphism and N EG
and M EH normal subgroups such that

• G/N ∼= H/M and

• N ∼= M .

Then G and H are isomorphic.

The prerequisites of Theorem 7 state that this commutative diagram holds:

G H

N M

E

ϕ

E

∼

Proof. From the isomorphism between G/N and H/M it follows that |G/N | = |H/M |
and N ∼= M implies that |N | = |M |. Then

|G| = |G/N ||N | = |H/M ||M | = |H|.

Together with the epimorphism ϕ, it follows that G ∼= H.
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2.1. Definitions and General Theorems

Lemma 8. Let q := pe, p a prime, e ∈ N and ω ∈ GF(q) a primitive element. Then
we have

q−1
2
−1∑

i=0

ω2i = 0.

Proof. We know that (ω
q−1
2 )2 = ωq−1 = 1 and thus ω

q−1
2 = −1.

Suppose first that q ≡ 1 mod 4. Then q−1
2 is even and the terms of the sum can be

paired such that

q−1
2
−1∑

i=0

ω2i = ω0 + ω2 + ω4 + . . .+ ωq−3

= ω0 + ω2 + . . .+ ω
q−1
2
−2 + ω

q−1
2 + . . .+ ωq−3

= (ω0 + ω
q−1
2 ) + (ω2 + ω

q−1
2

+2) + . . .+ (ω
q−1
2
−2 + ωq−3)

= (ω0 − ω0)︸ ︷︷ ︸
=0

+ (ω2 − ω2)︸ ︷︷ ︸
=0

+ . . .+ (ω
q−1
2
−2 − ω

q−1
2
−2)︸ ︷︷ ︸

=0

= 0.

Note that 2( q−1
2 − 1) = q − 3 = ( q−1

2 − 2) + q−1
2 .

Now suppose q ≡ 3 mod 4. Then q−1
2 is odd and we can reorder the sum to obtain

q−1
2
−1∑

i=0

ω2i = ω0 + ω2 + ω4 + . . .+ ωq−3

= ω0 + ω2 + . . .+ ω
q−1
2
−1 + ω

q−1
2

+1 + . . .+ ω
q−1
2
−1

= ω0 + ω
q−1
2

+1 + ω2 + ω
q−1
2

+3 + . . .+ ω
q−1
2
−1 + ω

q−1
2
−1

= ω0 − ω1 + ω2 − ω3 ± . . .+ ω
q−1
2
−1.

Then it follows that

(1 + ω)(ω0 − ω1 + ω2 − ω3 ± . . .+ ω
q−1
2
−1) = ω0 + ω

q−1
2 = 1− 1 = 0

⇔ (1 + ω)

q−1
2
−1∑

i=0

ω2i = 0.

We know that 1 + ω 6= 0, thus
∑ q−1

2
−1

i=0 ω2i = 0.

Lemma 9. Let q := pe ∈ N, where p is a prime. Then we call

· : GF(q2)→ GF(q2), x 7→ xq

the Frobenius homomorphism. This map is an automorphism of GF(q2), the fixed
field of · is GF(q) and we have x+ y = x+ y.

9



2. Mathematical Background

See [Nie18] for proofs of those claims.

Definition 10 (Trace). Let k, e ∈ N. Then we define the homomorphism

tr : GF(ke)→ GF(ke), x 7→
e−1∑
i=0

xk
i

and call it the trace of an element.

Lemma 11. Let q ∈ N be a prime power. Then the kernel of the field homomorphism
tr : GF(q2)→ GF(q2), x 7→ x+ xq has order q and the image is GF(q).

Proof. Let ω ∈ GF(q2) be a primitive element and suppose k ∈ N such that ωk ∈
Ker(tr), i.e.

ωk + ωkq = 0.

Then we obtain

ωk + ωkq = 0⇔ ωk = −ωkq

⇔ ωk = ω
q2−1

2 ωkq ⇔ 1 = ω
q2−1

2
+k(q−1)

⇔ q2 − 1

2
+ k(q − 1) ≡ 0 mod q2 − 1.

This holds for all k = q+1
2 m, where m ∈ N is odd. The elements ωk1 and ωk2 , for

k1 = q+1
2 m1 and k2 := q+1

2 m2, are unequal for odd natural numbers m1 6= m2 and
k1, k2 ≤ q2 − 1. Thus we may choose any odd m ≤ 2(q − 1) and the kernel has q − 1
elements and zero, thus order q.

It follows with the homomorphism theorem, that the image of tr has also order q
and for every x ∈ GF(q2) we have

tr(x)q = tr(x),

thus the image Im(tr) ⊆ GF(q) and it follows directly that Im(tr) = GF(q).

Lemma 12. Let f : GF(q2)→ GF(q), α 7→ αq+1, then the kernel of f has cardinality
|Ker(f)| = q + 1.

Proof. Let ω ∈ GF(q2) be a primitive element, α ∈ GF(q2) and k ∈ N such that
α = ωk. Then f(α) = 1 ⇔ αq+1 = 1 ⇔ ωk(q+1) = ω0. This holds if k = m(q − 1)
for some m ∈ N. We have ωk 6= ωk

′
for all 1 < k, k′ < q2 and k 6= k′. Thus

Ker(f) = {ωm(q−1) | 1 ≤ m ≤ q + 1} and the claim holds.

10



2.2. Presentations

2.2. Presentations

In this section we introduce presentations of groups. The idea is to construct an
isomorphism between a group G and a quotient of a free group FX . First we define
free groups.

Definition 13 (Free group, [Joh90], page 1). Let F be a group and X ⊆ F a subset.
Then the group F is called the free group on X if, for any group G and any map
f : X → G, there is a unique homomorphism ϕf : F → G extending f such that
xϕf = xf for all x ∈ X.
From now on we will write FX for the free group on a set X, where X is called the
basis and |X| the rank of the group FX .

The following proposition highlights the importance of presentations. It states that
for every group G there exists a quotient group of a free group which is isomorphic to
G. As an implication we obtain that there exists a presentation for every group.

Proposition 14 ([Joh90], page 19). Every group is isomorphic to a factor group of
some free group.

Proof. Let G be a group and X a set of generators of G. Then we define the map
f : X → G, x 7→ x. Then Definition 13 states that there exists a unique homomorphism
ϕf : FX → G extending f . We obtain

FX G

FX/Ker(ϕf )

ϕf

π ϕ̃f

where π is the canonical surjective map and ϕ̃f is bijective because Im(ϕf ) = G.
The isomorphism G ∼= FX/Ker(ϕf ) follows by the homomorphism theorem for groups
(see [Hup67], page 15).

Now we define a presentation. For every presentation we specify a presented group,
which is a quotient group of a free group.

Definition 15 (Presentation of a group, [HEO05], page 36). Let X be a set, FX
the free group on X and R ⊆ FX . Then we call {X | R} a presentation for the
group G := FX/N , where N = 〈R〉FX is the normal closure of R in FX . We write
G = 〈X | R〉.
The elements of R are called relators and G is finitely presented if X and R are
finite sets.

Since we have seen that there exists an isomorphic quotient group of a free group
for every group G (see Proposition 14), it follows with the previous lemma that there
exists a presentation for every group G.

11



2. Mathematical Background

Proposition 16 ([Joh90], page 54). Every group has a presentation.

Proof. We use Proposition 14. Let G be a group, X a set of generators of G and FX
the free group on X. Then there exists an unique homomorphism ϕf : FX → G (see
the proof of Proposition 14) and the proposition yields G ∼= FX/Ker(ϕf ). Now we
can write G = 〈X | Ker(ϕf )〉 and obtain the presentation.

We know now that every group has a presentation. For our purposes we are inter-
ested in finite presentations, which means that the number of generators and relators
is finite. Since we use this kind of presentation a lot in subsequent chapters, we define
a shorter notation for simplicity.

Definition 17 ([Joh90], page 41). Let G be finitely presented by {X | R} with X :=
{x1, . . . , xn} a set, FX the free group on X and {r1, . . . , rm} =: R ⊆ FX . Then we
write ri = ri(x1, . . . , xn) ∈ FX and call ri a relator of G. From now on we also use

{x1, . . . , xn | r1, . . . , rm}

as a notation for a finite presentation.

The main task in this thesis is to determine presentations for the finite classical
and related groups. We do this by seeking homomorpisms between a group G and a
presented group. If we can prove that those two groups are isomorphic, then the pre-
sentation is a presentation for G. The next proposition offers a way to show that a map
from generators of a free group to elements in G can be extended to a homomorphism
from the quotient group of the free group to G.

Proposition 18 (Substitution Test, [Joh90], page 56). Let 〈X | R〉 be a presentation
of the group G, H another group and ϕ : X → H a map. Then ϕ extends to a
homomorphism ϕ′′ : G → H if and only if, for all x ∈ X and r ∈ R, the result of
substituting xϕ for x in r yields the identity in H, thus r(xϕ1 , . . . , x

ϕ
n) = eH for all

r ∈ R if X = {x1, . . . , xn} is a finite set.

Proof. Let ϕ : X → H be a map. Then this map extends to a unique homomorphism
ϕ′ : FX → H, because FX is the free group on X.
Now the homomorphic extension ϕ′′ : G = FX/R → H, gR 7→ ϕ′(g) is well-defined if
the images are independent of the representatives, thus for all g ∈ FX and r ∈ R

ϕ′(gr) = ϕ′(g)

⇔ ϕ′(r) = ϕ′(r(x1, . . . , xn)) = idH

⇔ r(xϕ
′

1 , . . . , x
ϕ′
n ) = r(xϕ1 , . . . , x

ϕ
n) = idH .

It follows that R ⊆ Ker(ϕ′).
Conversely, let R ⊆ Ker(ϕ′). Then ϕ′′ : G → H is independent of the representatives
of G and thus ϕ′′ is well-defined.

This last proposition is used frequently to prove the correctness of presentations.
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2.2. Presentations

Proposition 19 ([Bou13], Proposition 4.7). Let G := 〈X〉, H ≤ G and S = ∪ri=1Hgi
for some gi ∈ G and g1 = 1. If gia ∈ S for all a ∈ X ∪X−1, then G = S. If we know
that the order |x| is finite for all x ∈ X, then it is enough to show that gia ∈ S for all
x ∈ X.

Refer to [Bou13] for a proof of this proposition.

Now we define the length of a presentation. The shorter the length of a presentation,
the faster is the evaluation of the relations on the generators of some group G. Since
a main aspiration of this work is to verify isomorphisms between a group G and a
classical or related group in a fast and efficient way, we aim to give presentations that
are as short as possible. For this purpose we define the bit-length of a presentation,
which essentially counts the number of generators and the number of multiplications
used in the relations.

Definition 20 (Bit-Length, [LGOB19], page 4). The bit-length of a presentation
{X | R} is defined as |X| plus the total number of bits required to encode the words
in R as strings over the alphabet X ∪X−1, where all exponents are encoded as binary
strings.

Leedham-Green and O’Brien show in [LGOB19] that for every classical group there
exists a presentation whose bit-length is limited by some linear function depending on
the rank of the group and the field over which it is defined.

Theorem 21 ([LGOB19], page 5). Every classical group of rank r defined over GF(q)
has a presentation on its standard generators with O(r) relations and total bit-length
O(r + log q).

All the presentations given in the next chapters (except for the Coxeter presentation
of the symmetric group in Lemma 25) are of length limited by the function given in
Theorem 21. We call those presentations small.

13





3. Symmetric Group Sn

We state two presentations of the symmetric group in this chapter. The symmetric
group is closely related to the alternating group, which yields one family of finite
simple groups. Before we look at the presentations, we analyse the elements in the
group. This helps us to prove the correctness of the presentations.

Definition 22 (Symmetric Group, [Hup67], page 24). The symmetric group Sn :=
{f : {1, . . . , n} → {1, . . . , n} | fbijective} is the group of all bijections on a set of size
n. We write the elements of Sn as permutations, hence as products of disjoint cycles,
and the action of a permutation g ∈ Sn on an element m ∈ {1, . . . , n} as mg.

For a presentation of the symmetric group, we need to know a bit more about the
group. We want to find sets of generators of the symmetric group and the next lemma
is useful for that purpose.

Lemma 23. Every transposition τi = (i, i + 1) ∈ Sn can be written as a product of
τ1 = (1, 2) ∈ Sn and the n-cycle g := (1, 2, . . . , n) ∈ Sn.

Proof. We verify this by induction.

• Base Case: Let i := 2. Then we have g−1τ1g = (n, . . . , 1)(1, 2)(1, . . . , n) =: h
and

xh = x for all x ∈ {1, 4, 5, . . . , n}.

Also 2h = 3 and 3h = 2, thus h = (2, 3) = τ2.

• The induction hypothesis is that τi = g−i+1τ1g
i−1 holds for an i ∈ {1, . . . , n−1}.

• Induction Step: Now i 7→ i+1. Then it follows that g−iτ1g
i = g−1g−(i−1)τ1g

i−1g
and with the induction hypothesis g−1g−(i−1)τ1g

i−1g = g−1τi−1g = (n, . . . , 1)(i−
1, i)(1, . . . , n) =: h. Again

xh = x for all x ∈ {1, 2, . . . , i− 1, i, i+ 3, i+ 4, . . . , n− 1, n}

and ih = i+ 1 and (i+ 1)h = i. Hence h = (i, i+ 1) and the assumption follows.

We have shown that two permutations suffice to construct any transposition (i, i+
1) ∈ Sn. We are able to determine two different sets of generators of the symmetric
group from this result.

15



3. Symmetric Group Sn

Lemma 24. The symmetric group Sn is generated by (1, 2) and (1, . . . , n) or the set
of adjacent transpositions (i, i+ 1) for i ∈ {1, . . . , n− 1}.

Proof. It is proven in [Beu94], page 211, that Sn = 〈(1, 2), . . . , (n − 1, n)〉. From
Lemma 23 we know that every transposition (i, i + 1) with i ∈ {1, . . . , n − 1} can be
written as a product of (1, 2) and (1, . . . , n). Also (1, 2), (1, . . . , n) ∈ Sn, thus

〈(1, 2), (1, . . . , n)〉 = Sn .

We obtained two different generating sets of the symmetric group and the next
section defines a presentation on each set.

3.1. Presentation

In this section we want to prove that the group presented by the short presentation

{X | R} := { U, V | U2 = V n = (UV )n−1 = (UUV )3 = (UUV
j
)2 = 1 for 2 ≤ j ≤ n/2 },

which was given [Moo96], p.357-367, is isomorphic to the symmetric group Sn for
n > 2. A few steps are needed for the verification of this claim. We show that there
exists another presentation

{X̃ | R̃} := { τ1, . . . , τn−1 | τ2
i = (τiτi+1)3 = (τiτj)

2 = 1 ∀j > i+ 1 }

for the symmetric group Sn. Then we use this presentation to prove the existence
of the epimorphisms ϕ′′ : 〈X | R〉 → Sn and θ′′ : 〈X̃ | R̃〉 → 〈X | R〉. If all these
requirements hold, then it follows that ϕ′′ is isomorphic and the presentation 〈X | R〉
is correct.

First we prove that the presentation {X̃ | R̃} is a presentation of Sn. Thus we show
the existence of a well-defined isomorphism χ′′ : 〈X̃ | R̃〉 → Sn.

Lemma 25 ([Moo96] and [Bou13], p.13). The symmetric group Sn has the presenta-
tion

{X̃ | R̃} := { τ1, . . . , τn−1 | τ2
i = (τiτi+1)3 = (τiτj)

2 = 1 ∀j > i+ 1 }

for n > 2.

Proof. Let χ : X̃ → Sn be a map with τi 7→ (i, i + 1). The group Sn is generated by
{(1, 2), (2, 3), . . . , (n− 1, n)} by Lemma 24 and we have

• r̃1
i (τ1, . . . , τn−1) := τ2

i for i ∈ {1, . . . , n− 1}. Thus

r̃1
i (τ

χ
1 , . . . , τ

χ
n−1) = (i, i+ 1)2 = idSn .
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3.1. Presentation

• r̃2
i (τ1, . . . , τn−1) := (τiτi+1)3 for i ∈ {1, . . . , n− 2} and

r̃2
i (τ

χ
1 , . . . , τ

χ
n−1) = ((i, i+ 1)(i+ 1, i+ 2))3

= (i, i+ 2, i+ 1)3 = idSn .

• r̃3
i (τ1, . . . , τn−1) := (τiτi+l)

2 for i ∈ {1, . . . , n− 3} and j > i+ 1. Thus

r̃3
i (τ

χ
1 , . . . , τ

χ
n−1) = ((i, i+ 1)(j, j + 1))2 = idSn

because i, i+ 1, j and j + 1 are pairwise distinct.

Let Ñ := 〈R̃〉FX̃ . It follows with Lemma 18 that there exists a homomorphic extension

χ′′ : FX̃/Ñ → Sn of χ, which is also surjective since Ñ ≤ Ker(χ′′). Thus |FX̃/Ñ | ≥
| Sn | = n!.

Now we call Gn the group presented by {X̃ | R̃} for some n ∈ N. We use induction
to show that |Gn| ≤ n! for all 2 ≤ n ∈ N.

• Base Case: Assume that n := 2. Then Gn := 〈τ1 | τ2
1 〉 and |Gn| = 2 = 2!.

• Induction Hypothesis: |Gn ≤ n! for an arbitrary but fixed n ∈ N with 2 ≤ n.

• Induction Step: Let 2 ≤ n ∈ N such that |Gn| ≤ n!. We defineH := 〈τ2, . . . , τn〉 ≤
Gn+1. We can renumber the generators of H to τ1, . . . , τn−1 and obtain that the
relations of Gn are satisfied. We apply the induction hypothesis and it follows
that |H| ≤ n!.

We want to prove that |Gn+1 : H| ≤ n+ 1. Since χ′′(H) ∼= Sn is a stabilizer of 1
in Sn+1, we obtain that {g0, . . . , gn} is a coset representation where χ′′(gi) maps
1 to i+1 for any 0 ≤ i ≤ n. Thus we choose g0 = 1 and gi = τ1 · · · τi ∈ Gn+1. We
define S := ∪ni=0Hgi and we need to prove that S = Gn. Using Proposition 19
we obtain that it is sufficient to prove that giτj ∈ S for all 0 ≤ i, j ≤ n.

Case 1 Let j > i+ 1. Then it follows that giτj = τjgi ∈ S since τj ∈ H.

Case 2 Let j = i+ 1. Then we have giτj = gi+1 ∈ S.

Case 3 Let j = 1. Then we have giτj = gi−1 ∈ S.

Case 4 Let j < i. Again we use induction and show that giτj = τj+1gi ∈ S for
all 1 ≤ i− j ≤ n− 1 and τj+1 ∈ H.

– Base Case: Assume that i − j = 1 with i ≥ 2 and j = i − 1. Then
giτj = gi−2τi−1τiτi−1 = gi−2τiτi−1τi = τigi−2τi−1τi = τigi = τj+1gi ∈ S.

– Induction Hypothesis: The claim holds for an arbitrary but fixed n ∈ N.

– Induction Step: We assume the induction hypothesis and show that the
claim holds for n+ 1 = i− j. Then we obtain giτj = gi−1τiτj = gi−1τjτi =
τj+1gi−1τi = τj+1gi ∈ S.

Hence |Gn+1 : H| ≤ n+ 1 and |Gn+1| ≤ (n+ 1)!.
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3. Symmetric Group Sn

Now χ′′ is an isomorphism and Lemma 25 follows.

In the next lemma we show that there exists a subgroup M ≤ 〈X | R〉 such that
〈X | R〉/M ∼= Sn.

Lemma 26. Let ϕ : X → Sn be a map with U 7→ (1, 2) and V 7→ (1, . . . , n). Then
there exists a surjective homomorphic extension ϕ′′ : 〈X | R〉 → Sn of ϕ.

Proof. Lemma 24 states that 〈(1, 2), (1, . . . , n)〉 = Sn. Hence ϕ is surjective. Using
Proposition 18 it remains to show that for every r ∈ R the substitution of x ∈ X by
xϕ
′′

is equal to the identity in Sn.

• r1(U, V ) := U2. Then

r1(Uϕ
′′
, V ϕ′′) = (1, 2)2 = idSn .

• r2(U, V ) := V n. Then

r2(Uϕ
′′
, V ϕ′′) = (1, . . . , n)n = idSn .

• r3(U, V ) := (UV )n−1. Then

r3(Uϕ
′′
, V ϕ′′) = ((1, 2)(1, . . . , n))n−1 = (1, 3, 4, . . . , n)n−1 = idSn .

• r4(U, V ) := (UUV )3. Then

r4(Uϕ
′′
, V ϕ′′) = ((1, 2)(1, 2)(1,...,n))3 = ((1, 2)(2, 3))3 = (1, 3, 2)3 = idSn .

• r5(U, V ) := (UUV
j
)2 for 2 ≤ j ≤ n/2. With Lemma 23 it follows that

r5(Uϕ
′′
, V ϕ′′) = ((1, 2)(1, 2)(1,...,n)j )2 = ((1, 2)(j + 1, j + 2))2 1)

= idSn

where 1) follows because 1, 2, j + 1, j + 2 are pairwise distinct.

Thus there exists a surjective homomorpic extension ϕ′′ : 〈X | R〉 = FX/N → Sn of ϕ
where N = 〈R〉FX .

We have shown that there exists an isomorphism χ′′ : 〈X̃ | R̃〉 → Sn and an
epimorphism ϕ′′ : 〈X | R〉 → Sn. The next step is to show that there exists an
epimorphism θ′′ : 〈X̃ | R̃〉 → 〈X | R〉. The proof is similar to the proof of Lemma 26.

Lemma 27. The map θ : X̃ → 〈X | R〉 = FX/N with τi 7→ UV
i−1
N , where N =

〈R〉FX , extends to an epimorphism θ′′ : 〈X̃ | R̃〉 → 〈X | R〉.

Proof. Again Proposition 18 is used to verify that there exists such an extension.
When substituting x̃ ∈ X̃ by x̃θ in the relations in R̃ then the result should be N .

18



3.1. Presentation

• r̃1
i (τ1, . . . , τn−1) := τ2

i for an i ∈ {1, . . . , n− 1}. Then

r̃1
i (τ

θ
1 , . . . , τ

θ
n−1) = (UV

i−1
N)2

1)
= V −(i−1)UV i−1V −(i−1)UV i−1N

= V −(i−1)U2V i−1N

2)
= V −(i−1)V i−1N = N

where 1) follows becauseN is a normal subgroup and 2) from the relation U2 ∈ R.

• r̃2
i (τ1, . . . , τn−1) := (τiτi+1)3 for an i ∈ {1, . . . , n− 2}. Then

r̃2
i (τ

θ
1 , . . . , τ

θ
n−1) = (UV

i−1
NUV

i
N)3

1)
= (V −(i−1)UV i−1V −iUV i)3N

= V −(i−1)(UV −1UV )3V i−1N

= V −(i−1)(UUV )3V i−1N

2)
= V −(i−1)V i−1N = N

where 1) follows again because N is a normal subgroup and 2) because (UUV )3

is a relation in R.

• r̃3
i (τ1, . . . , τn−1) := (τiτi+l)

2 for an i ∈ {1, . . . , n− 1} and l > 1. Then

r̃3
i (τ

θ
1 , . . . , τ

θ
n−1) = (UV

i−1
NUV

i+l−1
N)2

1)
= (UV

i−1
UV

i+l−1
)2N

= (V −(i−1)UV i−1V −(i+l−1)UV i+l−1)2N

2)
= V −(i−1)(UV −lUV l)2V i−1N

= V −(i−1)V i−1N = N

where 1) follows once again because N is a normal subgroup and 2) because

(UUV
l
)2 is a relation in R for l > 1.

Now such an extension θ′′ exists and 〈R̃〉FX̃ = Ñ ≤ Ker(θ′′), thus we obtain that this
extension is also surjective.

Everything is ready to prove that the short presentation given in Theorem 28 is a
presentation of the symmetric group Sn.

Theorem 28. For n > 2 the symmetric group Sn has the presentation

{X | R} := { U, V | U2 = V n = (UV )n−1 = (UUV )3 = (UUV
j
)2 = 1 for 2 ≤ j ≤ n/2 }.
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3. Symmetric Group Sn

Proof. By Lemma 26 there exists an epimorphism ϕ′′ : 〈X | R〉 → Sn, thus

〈X | R〉/M ∼= Sn

for a subgroup M ≤ 〈X | R〉.
On the other hand it is known by Lemma 25 that there exists an isomorphism χ : Sn →
FX̃/Ñ and Lemma 27 implies that there is an epimorphism θ′′ : 〈X̃ | R̃〉 → 〈X | R〉.
Thus

Sn /M̂ ∼= 〈X̃ | R̃〉/M̃ ∼= 〈X | R〉

for a subgroup M̂ ≤ Sn and an isomorphic subgroup M̃ ≤ 〈X̃ | R̃〉.
It follows that 〈X | R〉 ∼= Sn and {X | R} is a presentation of Sn.

We have shown that there exists a short presentation of the symmetric group. Note
that the presentation given in Lemma 25 is not a short presentation. Only the pre-
sentation given in Theorem 28 is short.
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4. Group of Signed Permutation Matrices
of Determinant 1 SHn

The group of signed permutation matrices of determinant 1, in short SHn, is isomorphic
to a subgroup of the hyperoctahedral group Hn, which is the group of all signed
permutations on the set {±1, . . . ,±n}. This chapter starts with the definition of signed
permutations and the hyperoctahedral group in Section 4.1. In the next section we
define the group of signed permutation matrices of determinant 1 and Section 4.3 gives
a presentation for this group.

4.1. Hyperoctahedral Group Hn

This section defines the hyperoctahedral group Hn. We start by defining signed per-
mutation cycles. Using those cycles we can easily define general signed permutations.

Definition 29 (Signed Permutation Cycle, [LGOB19], page 7). A signed permuta-
tion cycle (a1, . . . , al)

ε, with ε = ±1 and ai ∈ {±1, . . . ,±n}, is a permutation where
|a1|, . . . , |al| are pairwise distinct and for ε = +1 we define

(a1, . . . , al)
+ := (a1, . . . , al)(−a1, . . . ,−al).

For ε = −1 we define

(a1, . . . , al)
− := (a1, . . . , al,−a1, . . . ,−al).

We can already observe that ai 7→ aj implies that −ai 7→ −aj . Remembering the
signification of cycles for permutations in the symmetric group (every permutation
can be written as a product of permutation cycles), we define signed permutations in
a similar way.

Definition 30 (Signed Permutation). A signed permutation on {±1, . . . ,±n} is a
product of signed permutation cycles on {±1, . . . ,±n}, as defined in Definition 29.

Now we prove the observation that we already made looking at the permutation
cycles. We state that the negation of a number a is mapped to the negation of aπ for
any number a ∈ {±1, . . . ,±n} and signed permutation π.

Lemma 31. Let π = (a1, . . . , al)
ε be a signed permutation cycle with ε = ±1 and

ai ∈ {±1, . . . ,±n}, we have aπ = −(−a)π for every a ∈ {±1, . . . ,±n}.
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4. Group of Signed Permutation Matrices of Determinant 1 SHn

Proof. Let a ∈ {±1, . . . ,±n}. If a 6= ai and a 6= −ai for all i ∈ {1, . . . , l}, then
aπ = a = −(−a)π.

Now let a = ai for some i ∈ {1, . . . , l} and ε = +1. Then with Definition 29 it follows
that

aπ = aπi = a
(a1,...,al)(−a1,...,−al)
i = ai+1

= −(−ai+1) = −(−ai)(a1,...,al)(−a1,...,−al) = −(−ai)π = −(−a)π,

where ai+1 = −a1 if i = l. Now let ε = −1. Then it follows again with Definition 29
that

aπ = aπi = a
(a1,...,al,−a1,...,−al)
i = ai+1

= −(−ai+1) = −(−ai)(a1,...,al,−a1,...,−al) = −(−ai)π = −(−a)π,

where ai+1 = −a1 if i = l. If a = −ai for an i ∈ {1, . . . , l}, then we can rename
ãi := −ai and a = ãi for an i ∈ {1, . . . , l}. The permutation π̃ = (ã1, . . . , ãl)

ε is equal
to π, thus the claim follows.

Now we define the hyperoctahedral group as the group of all permutations that fulfil
the requirement that aπ = −(−a)π for a ∈ {±1, . . . ,±n} and π is a permutation on
the set. Note that we have shown in the previous lemma that the signed permutation
cycles satisfy this requirement.

Definition 32 (Hyperoctahedral Group). The hyperoctahedral group Hn is the
group of permutations π of the set {±1, . . . ,±n} with aπ = −(−a)π.

Since the signed permutation cycles lie in the hyperoctahedral group, we can deduce
that the signed permutations (that are products of signed permutation cycles) also lie
in the group. We prove that the hyperoctahedral group is exactly the group of all
signed permutations.

Theorem 33. The hyperoctahedral group Hn is the group of all signed permutations
on {±1, . . . ,±n}.

Proof. We fix n ∈ N and defineG as the group of all signed permutations on {±1, . . . ,±n}.
For any π ∈ G that consists of only one distinct non-trivial cycle it follows with
Lemma 31 that π ∈ Hn. For a product π1π2 ∈ G of signed permutation cycles and
a ∈ {±1, . . . ,±n} we have

aπ1π2 = (aπ1)π2 = (−(−a)π1)π2 = −((−a)π1)π2 = −(−a)π1π2

for any a ∈ {±1, . . . ,±n} and thus every element of G lies in Hn.

Now let π ∈ Hn. Then we have π(a) = −π(−a) for every a ∈ {±1, . . . ,±n} by
Definition 32.

• If aπ = a for all a ∈ {±1, . . . ,±n}, then π = id and thus π ∈ G.
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4.2. Group SHn

• If it is aπ = b for an a ∈ {±1, . . . ,±n} and a 6= b ∈ {±1, . . . ,±n}, then it is also
(−a)π = −aπ = −b.
We define M := (a, aπ, . . . , aπ

l−1
), where l is the smallest natural number with

aπ
l

= a. We know that there exists a π1 ∈ Hn such that M and π1 are disjoint
cycles and π = Mπ1.

Assuming that −b ∈M , it follows directly that −a ∈M and that there exists a
k ∈ N with k < l and aπ

k
= −a. Thus M is a signed permutation and can be

written as

M = (a, aπ, . . . , aπ
k−1

,−a, (−a)π, . . . , (−a)π
k−1

).

Now we assume that −b /∈M . Since −a /∈M , it holds that (−a)π
l

= −aπl = −a
and we define

M̃ := (−a, (−a)π, . . . , (−a)π
l−1

).

The permutations M and M̃ are distinct and there exists a π2 ∈ Hn, which is
also distinct to M and M̃ , with π = Mπ1 = MM̃π2. Note that MM̃ is a signed
permutation.

For π1 resp. π2 it follows recursively that they are a product of signed permutations,
thus π is a also a signed permutation and π ∈ G. It follows that Hn = G.

Now that we have specified the hyperoctahedral group, we look at a subgroup and
an isomorphic group.

4.2. Group SHn

Before we define the group of signed permutation matrices of determinant 1, we look
at a group which is isomorphic to the hyperoctahedral group. This is the group of all
signed permutation matrices. A signed permutation matrix is related to a permutation
matrix, but there might exist entries unequal to 0 and 1.

Definition 34 (Signed Permutation Matrix). A signed permutation matrix M ∈
Rn×n of degree n is a monomial matrix where the non-zero entries are ±1. We denote
the set of signed permutation matrices of degree n HM

n .

We define a map from signed permutations to signed permutation matrices. Later
we show that this map is an isomorphism.

Definition 35. Let π ∈ Hn be a signed permutation on {±1, . . . ,±n}. Then we define
ϕ(π) = Mπ ∈ Rn×n as the correlating signed permutation matrix, explicitely

ϕ : Hn → HM
n , π 7→Mπ with (Mπ)i,j :=


+1, if iπ = j

−1, if iπ = −j
0, otherwise.
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4. Group of Signed Permutation Matrices of Determinant 1 SHn

Example. Let (1, 2)−(4)− =: π ∈ H4. Then we obtain with Definition 35 that

ϕ(π) =


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 −1

 .

Note that this matrix has determinant det(Mπ) = −1.
We show that the map ϕ is an isomorphism and deduce that the group of signed

permutations and the group of signed permutation matrices are isomorphic.

Lemma 36. The group of signed permutation matrices HM
n is isomorphic to the hy-

peroctahedral group Hn.

Proof. See [Fra66]. We use the function ϕ : Hn → HM
n defined in Definition 35. The

map ϕ is injective, because if we have π, π̃ ∈ Hn with ϕ(π) = ϕ(π̃), then π = π̃ follows
directly from Definition 35.

Let {e1, . . . , en} be the set of standard basis vectors of Rn, M ∈ Mn a signed
permutation matrix of degree n and sgn : Z→ {±1},±|n| 7→ ±1 the signum function.
Then we define πM : {±1, . . . ,±n} → {±1, . . . ,±n}, i 7→ j such that sgn(i)Me|i| =
sgn(j)e|j|. The function πM is a well-defined permutation because of the properties of
the signed permutation matrix M in Definition 34 (namely that there is exactly one
non-zero entry in every column and line). Since −(sgn(i)Me|i|) = sgn(−i)Me|−i|, we
have (−i)πM = −j = −iπM and πM is also well-defined as a signed permutation.

Thus ϕ is an isomorphism and the lemma follows.

The next theorem inspires our proof of the correctness of the presentation given in
Section 4.3.

Theorem 37. The hyperoctahedral group Hn is isomorphic to the wreath product C2 o
Sn ∼= (C2)n o Sn.

Proof. See Definition 4 and Definition 6 for the definition of wreath products and
semidirect products and [Ker71], page 39, and [Fra66] for the proof.

We finally give a definition of the group of signed permutation matrices of determi-
nant 1. In the next section we look at a presentation of this group.

Definition 38 (Group of Signed Permutation Matrices of Determinant 1). Let n ∈ N
and HM

n be the group of all signed permutation matrices. Then we define

SHn := {M ∈ HM
n | det(M) = 1} ≤ HM

n

and call it the group of signed permutation matrices of determinant 1.

Lemma 39. The group SHn is isomorphic to a subgroup of the hyperoctahedral group
Hn.
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4.2. Group SHn

Proof. Since the groups Hn and HM
n are isomorphic, this follows directly.

Before stating a presentation of the group SHn and proving its correctness, we need
to find a generating set to build a presentation on. A generating set is presented in
the next theorem - note the similarity to one of the generating sets of the symmetric
group (see Theorem 24).

Theorem 40. The group SHn is generated by ϕ(u) and ϕ(v), where u := (1, 2)−,
v := (1, . . . , n)ε, ε := (−1)n+1 and ϕ as in Definition 35.

Proof. We have

ϕ(u) =


0 −1 0 . . . 0
1 0 0 . . . 0
0 0 1 . . . 0
...

...
...

. . . 0
0 0 0 0 1


with det(ϕ(u)) = 1 and thus ϕ(u) ∈ SHn. Also

ϕ(v) =


0 0 0 . . . ε1
1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

. . . 0
0 0 0 0 0


with det(ϕ(v)) = 1 for ε = (−1)n+1. Thus ϕ(v) ∈ SHn and 〈ϕ(u), ϕ(v)〉 ⊆ SHn.

Now let M ∈ SHn, then we know that M is a signed permutation matrix. There
exists a matrix N ∈ 〈ϕ(u), ϕ(v)〉 such that the non-zero entries of M and N are similar.
Thus there exists a diagonal matrix D with entries ±1 such that M = DN . We have
det(M) = det(D) det(N)⇔ det(D) = 1.

Consequently the matrix D has an even number of negative entries, say I is the
maximal set such that Di,i = −1 for i ∈ I. Then |I| is even. We obtain

ϕ(u)2 =


−1 0 0 . . . 0
0 −1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . . 0
0 0 0 0 1

 and (ϕ(u)2)ϕ(v) =


1 0 0 . . . 0
0 −1 0 . . . 0
0 0 −1 . . . 0
...

...
...

. . . 0
0 0 0 0 1

 .

Via a proof of induction it follows that

((ϕ(u)2)ϕ(v)j )i,i =

{
−1, j = i+ 1 or j = i+ 2

1, otherwise

for j < n−1 and i ∈ {1, . . . , n}. Multiplying those matrices we can obtain any diagonal
matrix with diagonal entries ±1 and an even number of negative entries and thus we
obtain the matrix D as a product of the matrices {(ϕ(u)2)ϕ(v)j | 0 ≤ j < n − 1}. As
a result it follows that DN = M ∈ 〈ϕ(u), ϕ(v)〉 and SHn ⊆ 〈ϕ(u), ϕ(v)〉.
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4. Group of Signed Permutation Matrices of Determinant 1 SHn

4.3. Presentation of SHn

In this section we provide a presentation of the group of signed permutation matrices
of determinant 1 on the generators defined in Theorem 40.

To make this section more readable, we set some notation in the next remark that
is used until the end of this chapter.

Remark 41. Let n ∈ N and the dimension of the matrices is n × n. Further ε :=
(−1)n+1, u := (1, 2)− and v := (1, . . . , n)ε. Then we define

Mu := ϕ(u) and Mv := ϕ(v),

where Mu,Mv ∈ SHn. We know from Theorem 40 that 〈Mu,Mv〉 = SHn.

We show the correctness of the following presentations of the group of signed per-
mutation matrices of determinant 1.

Remark 42. The group SHn has the presentation

{X ′ | R′odd} := { U ′, V ′ | U ′4 = U ′2V
′U ′U ′2U ′2V

′
= V ′n = (U ′V ′)n−1 = (U ′U ′V

′
)3

= [U ′, U ′V
′j

] = 1 for 2 < j < (n+ 1)/2}

for an odd n ∈ N and

{X ′ | R′even} := { U ′, V ′ | U ′4 = U ′2V
′U ′U ′2U ′2V

′
= (U ′U ′V

′
)3 = [V ′n, U ′] = V ′2n = 1,

V ′n = (U ′V ′)n−1, [U ′, U ′V
′j

] = 1 for 2 < j < (n+ 1)/2}

if n is even. We write {X ′ | R′} if we want R to change according as n is odd or even.

The proof of the correctness of those presentations resembles the proof in Chapter 3
since we use Proposition 18 to show the existence of an epimorphism from the presented
group 〈X ′ | R′〉 in the group SHn.

Lemma 43. There exists an epimorphism ψ : G′ = 〈X ′ | R′〉 → SHn with ψ(U ′) = Mu

and ψ(V ′) = Mv.

Proof. We have

u4 = (1, 2,−1,−2)4 = id,

u2vuu2u2v = ((1)−(2)−)(1,...,n)ε(1,2)−(1)−(2)−((1)−(2)−)(1,...,n)ε

= ((2)−(3)−)(1,2)−(1)−(2)−(2)−(3)− = (1)−(3)−(1)−(3)− = id,

(uuv)3 = ((1, 2)−((1, 2)−)(1,...,n)ε)3 = ((1, 2)−(2, 3)−)3

= ((1, 3,−2)(−1,−3, 2))3 = id and

[u, uv
j
] = [(1, 2)−, (j + 1, j + 2)−]

= ((1, 2)−)−1((j + 1, j + 2)−)−1(1, 2)−(j + 1, j + 2)−

= id for 2 < j < (n+ 1/2).
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For an odd n ∈ N we have

vn = ((1, . . . , n)+)n = id,

(uv)n−1 = ((1, 3, 4, . . . , n)+)n−1 = id

and for an even n ∈ N we have

[vn, u] = [((1, . . . , n)−)n, (1, 2)−] = [(1)− · · · (n)−, (1, 2)−]

= (1)− · · · (n)−(2, 1)−(1)− · · · (n)−(1, 2)− = id,

v2n = ((1)− · · · (n)−)2 = id and

(uv)n−1 = ((1, 3, . . . , n)−(2)−)n−1 = (1)− · · · (n)− = vn.

Thus the relations also hold for the matrices Mu and Mv, the requirements for Propo-
sition 18 are fulfilled and ψ is an epimorphism.

We use Theorem 7 to prove the isomorphism between the generated group 〈X ′ | R′〉
and the group SHn. Thus we need to prove all the prerequisites first. We start by
providing a normal subgroup of SHn.

Lemma 44. The set A := 〈{ai := ϕ((u2)v
i−1

) | 1 ≤ i ≤ n}〉 is a normal subgroup of
SHn.

Proof. We have ai = ϕ((i)−(i+ 1)−),

ϕ−1(ai)
v = ((i)−(i+ 1)−)(1,...,n)ε = (i+ 1)−(i+ 2)− = ϕ−1(ai+1)

for i < n and

ϕ−1(an)v = (ε1)−(ε2)− = (1)−(2)− = ϕ−1(a1).

Thus aMv
i ∈ A for every i ∈ {1, . . . , n− 1}.

For i > 2 it is aMu
i = ai. If i = 2, then we have

ϕ−1(ai)
u = ((2)−(3)−)(1,2)− = (1)−(3)− = ϕ−1(a1a2).

And for i = 1 we obtain ϕ−1(ai)
u = ((1)−(2)−)(1,2)− = (1)−(2)− = ϕ−1(a1). So

aMu
i ∈ A for every i ∈ {1, . . . , n− 1}. Since Mu and Mv generate SHn, it follows that
aM ∈ A for every a ∈ A and M ∈ SHn and A is a normal subgroup of SHn.

We have shown that there exists a normal subgroup A E SHn. The next lemma
states that SHn /A ∼= Sn. In the succeeding lemmata we show that there exists a
normal subgroup A′ E 〈X ′ | R′〉 such that 〈X ′ | R′〉/A′ ∼= Sn.

Lemma 45. Let A be as in Lemma 44 and SHn the group of signed permutation
matrices of determinant 1 and degree n. Then SHn /A is isomorphic to the symmetric
group Sn.
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Proof. We use the same notation as in Theorem 28. Let φ : X → SHn /A be a map
with Uφ = MuA and V φ = MvA. Then according to Proposition 18 there exists
an epimorphism φ′′ : Sn ∼= FX/〈R〉FX → SHn /A if ri(U

φ, V φ) ∈ A holds for every
relation ri(U, V ) ∈ R.

• r1(U, V ) := U2. Then

r1(Uφ, V φ) = (ϕ(u)A)2 = ϕ(u)2A = ϕ((1)−(2)−)A = A.

• r2(U, V ) := V n. If n is even, it follows that

r2(Uφ, V φ) = (ϕ(v)A)n = ϕ(v)nA = ϕ((1)− · · · (n)−)A = A.

And if n is odd, we obtain

r2(Uφ, V φ) = (ϕ(v)A)n = ϕ(v)nA = idSHn A.

• r3(U, V ) := (UV )n−1. Then

r3(Uϕ
′′
, V ϕ′′) = (ϕ(u)Aϕ(v)A)n−1 = (ϕ(uv))n−1A = ϕ(((1, 3, . . . , n)ε)n−1)A,

which is equal to ϕ((1)− · · · (n)−)A = A for even n and idSHn A for odd n.

• r4(U, V ) := (UUV )3. Then we obtain

r4(Uϕ
′′
, V ϕ′′) = (ϕ(u)A(ϕ(u)A)ϕ(v)A)3 = ϕ((uuv)3)A

= ϕ(((1, 2)−(2, 3)−)3)A = ϕ(((1, 3,−2)+)3)A = A.

• r5(U, V ) := (UUV
j
)2 for 2 ≤ j ≤ n/2. Then we have

r5(Uϕ
′′
, V ϕ′′) = (ϕ(u)A(ϕ(u)A)(ϕ(v)A)j )2 = ϕ((uuv

j
)2)A

= ϕ(((1, 2)−(j, j + 1)−)2)A = ϕ((1)−(2)−(j)−(j + 1)−)A = A,

and either j = 2 and thus ϕ((1)−(j + 1)−) ∈ A or j 6= 2 and ϕ(((1)−(2)−)
((j)−(j + 1)−)) ∈ A.

Thus there exists an epimorphism φ′′ : Sn → SHn /A.
Now let ϕ(π)A ∈ SHn /A be an equivalence class. Then we know that ϕ(π)A =
{ϕ(π)a | a ∈ A}. Let ϕ(π̃) ∈ Hn be a matrix where all entries are 1 or 0 with
|iπ| = |iπ̃|. If det(ϕ(π)) = 1, then ϕ(π)A = {ϕ(π̃)a | a ∈ A}. And if det(ϕ(π)) = −1,
then ϕ(π)A = {ϕ((1)−π̃)a | a ∈ A}. Using Lemma 24 we know that there exists an
element σ ∈ ϕ(π)A that is generated by ϕ(u) and ϕ(v) for every ϕ(π)A ∈ SHn /A and
if follows that φ′′ is also injective and thus an isomorphism.

Similarly to AE SHn we need a subgroup A′E 〈X ′ | R′〉 to fulfil the prerequisites of
Theorem 7.
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Lemma 46. The set A′ := 〈{a′i := (U ′2)V
′i−1 | 1 ≤ i < n}〉 is a normal subgroup of

the group G′ := FX′/N
′, where X ′ and R′ are defined as in the presentation

{X ′ | R′} := { U ′, V ′ | U ′4 = U ′2V
′U ′U ′2U ′2V

′
= V ′n = (U ′V ′)n−1 = (U ′U ′V

′
)3

= [U ′, U ′V
′j

] = 1 for 2 < j < (n+ 1)/2}.

and N ′ = 〈R′〉FX′ is the normal closure of R′ in FX′.

Proof. For i ∈ {1, . . . , n − 1} we have a′V
′

i = a′i+1. For i = n we obtain aV
′

n =

((U ′2)V
′n−1

)V
′

= (U ′2)V
′n

= U ′2 = a′1, because V ′n = id is a relation in R′. Thus
a′V

′
i ∈ A′ for every i ∈ {1, . . . , n− 1}.

Furthermore we have a′U
′

1 = a′1 ∈ A′. Since there exists the relator U ′2V
′U ′U ′2U ′2V

′ ∈
R′, we obtain

a′U
′

2 a′1a
′
2 = id⇔ a′U

′
2 = a′−1

2 a′−1
1 = a′2a

′
1 ∈ A′.

For 2 < i < n we have

a′U
′

i = U ′−1(U ′2)V
′i−1

U ′ = U ′−1(U ′V
′i−1

)2U ′

= U ′−1U ′V
′i−1

U ′U ′V
′i−1

= U ′−1U ′(U ′V
′i−1

)2 = a′i,

because of the relator [U ′, U ′V
′j

] ∈ R′. Thus A′ is a normal subgroup.

Now that we have a normal subgroup A′ E 〈X ′ | R〉, we show that the quotient
group 〈X ′ | R′〉/A′ is isomorphic to the symmetric group Sn. We can thus derive that
〈X ′ | R′〉/A′ ∼= SHn /A.

Lemma 47. Let A′ be as in Lemma 46 and G = 〈X ′|R′〉 the group that is defined by
the presentation in Remark 41. Then G/A′ is isomorphic to the symmetric group Sn.

Proof. We define ϕ : X → G/A′ with ϕ(U) = A′U ′ and ϕ(V ) = A′V ′, where X is the
set in Theorem 28. Since we have

(A′U ′)2 = A′,

(A′V ′)n = A′V ′n = A′,

(A′U ′A′V ′)n−1 = A′(U ′V ′)n−1 = A′,

(A′U ′(A′U ′)A
′V ′)3 = A′(U ′U ′V

′
)3 = A′ and

(A′U ′(A′U ′)(A′V ′)j )2 = A′(U ′U ′V
′j

)2 = A′U ′−1(U ′V
′j

)−1U ′U ′V
′j

= A′[U ′, U ′V
′j

] = A′ for 2 < j < (d+ 1)/2,

we obtain that there exists an subjective homomorphic extension ϕ′′ : Sn → G/A′ by
Proposition 18. Furthermore we obtain U2 = id and thus

(A′U ′4)ϕ
−1

= (A′U ′2V
′U ′U ′2U ′2V

′
)ϕ = id .
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Also
(A′V ′n)ϕ

−1
= (A′(U ′V ′)n−1)ϕ

−1
= (A′(U ′U ′V

′
)3)ϕ

−1
= id

and
(A′[U ′, U ′V

′j
])ϕ
−1

= U−1(UV
j
)−1UUV

j
= (UUV

j
)2 = id .

For even n ∈ N it follows that (A′[V ′n, U ′])ϕ
−1

= V −nU−1V nU = U−1U = id and
(A′V ′2n)ϕ

−1
= id.

Using Proposition 18 we obtain ϕ−1 is a well-defined homomorphism and ϕ is an
isomorphism.

Proposition 48. Define A as in Lemma 44 and A′ as in Lemma 46. Then A ∼= A′.

Proof. We remember that A := 〈{ai := ϕ((u2)v
i−1

) | 1 ≤ i ≤ n}〉 and A′ := 〈{a′i :=

(U ′2)V
′i−1 | 1 ≤ i ≤ n}〉 and define

ψ : A→ A′, ai 7→ a′i.

We know that a2
i = ϕ((u2)v

i−1
)2 = ϕ((u4)v

i−1
) = ϕ(idv

i−1
) = id and (a′i)

2 = ((U ′2)V
′i−1

)2 =

(U ′4)V
′i−1

= id using the relations of the presentation in Remark 41. Also ai and aj
commute for 1 ≤ i, j ≤ n, because both are diagonal matrices (see proof of Theo-
rem 40). Using the relation U ′2V

′U ′U ′2U ′2V
′

= 1 in G′, we follow that a′U
′

2 a′1a
′
2 =

1 ⇔ a′U
′

2 = a′2a
′
1. Now (a′U

′
2 )2 = 1 implies that (a′2a

′
1)2 = 1 ⇔ a′2a

′
1a
′
2a
′
1 = 1 ⇔

a′−1
2 a′−1

1 a′2a
′
1 = 1 and thus a′1 and a′2 commute. From the relation [U ′, U ′V

′j
] = 1 for

3 ≤ j ≤ n− 1 we can conclude that a′1 and a′j commute and thus a′i and a′j commute
for all 1 ≤ i, j ≤ n.

Consequently the map ψ is a well-defined isomorphism and the result follows.

We have shown all the prerequisites of Theorem 7 and we combine this to prove the
correctness of the presentation {X ′ | R′} for the group of signed permutation matrices
of determinant 1.

Theorem 49. There exists an isomorphism G′ ∼= SHn between the group G′ of the
presentation in Remark 42 and the group SHn.

Proof. We show the isomorphism by using Theorem 7. According to Lemma 43 there
exists an epimorphism ψ : G′ = 〈X ′ | R′〉 → SHn. As shown in Lemma 44 and
Lemma 46, there exist normal subgroups A E SHn and A′ E G′ such that A ∼= A′

(which is proven in Proposition 48). Furthermore we have G′/A′ ∼= Sn ∼= SHn /A with
Lemma 45 and Lemma 47. Thus all the requirements for Theorem 7 are fulfilled and
the correctness of the presentation in Remark 42 is proven.
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5. Special Linear Group SL(2, q)

This chapter gives presentations of the special linear group SL(2, q) of degree 2 de-
pending on q. It is divided into two sections. In the first one I define the special
linear group and present generators of SL(2, q). In the second section I list various
presentations for SL(2, q) and PSL(2, q).

Throughout this chapter we use the presentations of SL(2, q) and PSL(2, q) as given
in [CR80] and [CRW90] and modify them to obtain presentations on the standard
generators defined in [LGOB09], page 841. The generating set and presentations by
Campbell, Robertson and Williams can be found in Appendix A.

5.1. Definition and Generators

We start with definitions of the groups and give a generating set for the special linear
group of degree 2.

Definition 50 (Special Linear Group, [Hup67], page 177). The special linear group
over the field K of degree n is defined as

SL(n,K) := {M ∈ GL(n,K) | det(M) = 1} ≤ GL(n,K).

We study the special linear group of degree 2 over some finite field. Hence we have
K = GF(q) for some q = pe, p a prime and 1 < e ∈ N, or K = GF(p), if K is a
field of prime order. We can thus change the notation and write SL(2, q) instead of
SL(2,GF(q)), since this is shorter.

Definition 51 (Projective Special Linear Group, [Hup67], page 177). The projective
special linear group is defined as

PSL(2, q) := SL(2, q)/Z(SL(2, q)),

where

Z(SL(2, q)) = {aI2 | det(aI2) = a2 = 1}.

Now that the groups are defined, we take a look at single elements of the special
linear group SL(2, q). We want to find a generating set of this group.

Lemma 52. Let q = pe for a prime p, ω ∈ GF(q) is a primitive element and

τ :=

(
1 1
0 1

)
and δ :=

(
ω−1 0

0 ω

)
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5. Special Linear Group SL(2, q)

are two matrices in GF(q)2×2. Then the matrix

τ1 :=

(
1 ω
0 1

)
is a product of τ and δ.

Proof. We first show that there exist a0, . . . , ae−1 ∈ GF(p) such that ω =
∑e−1

i=0 aiω
2i.

We define the abelian group V := 〈w2i | 1 ≤ i ≤ (q−1)/2〉 and thus V is a GF(p)-vector
space. The GF(p)-vector space V is an abelian group regarding addition, which follows
from the definition of a vector space (see [Beu94], page 59). Also the multiplication
is associative, commutative and a neutral element (the neutral element of V ) exists.
Thus the GF(p)-vector space V is a ring and we have V ⊆ GF(q). Now we define K
as the field closure of V , which is a subfield of GF(q).

The order of ω is q, thus it holds for the group V that |V | ≥ (q − 1)/2 + 1. It
follows that |K | > q/2. We also know that |K | | q and it follows that |K | = q and
K = GF(p)(ω2) = GF(q).

The elements 1, ω2, . . . , ω2e are not linearly independent. Thus a linear combination

ω =

e−1∑
i=0

aiω
2i (5.1)

exists, where ai ∈ GF(p) for all i.
Since p is a prime, we have Z/pZ ∼= GF(p) and define j̃ ∈ N as the smallest positive

integer in the natural representation of GF(p) in N.

It is δ−1τδ =

(
1 ω2

0 1

)
and (δ−iτδi)j̃ =

(
1 jω2i

0 1

)
for elements i ∈ N, j ∈

GF(p) and j̃ the corresponding element in N to j.

We set τ1 :=
∏e−1
i=0

(
1 aiω

2i

0 1

)
=

(
1 ω
0 1

)
using the linear combination defined

in Equation 5.1.

As you can see later, this last lemma helps us to shorten the generating set given
in Theorem 99 since we can drop the matrix y. The next theorem lists three matrices
that form a generating set of SL(2, q).

Theorem 53 ([LGOB09], page 841). Let q = pe for a prime p, 1 < e ∈ N and
ω ∈ GF(q) a primitive element. Then

τ :=

(
1 1
0 1

)
, δ :=

(
ω−1 0

0 ω

)
and U :=

(
0 −1
1 0

)
generate the special linear group SL(2, q).

Proof. We have det(τ) = det(δ) = det(U) = 1, thus the defined matrices are in
SL(2, q) and 〈τ, δ, U〉 ⊆ SL(2, q).
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Now let M :=

(
a b
c d

)
∈ SL(2, q). Then det(M) = ad − bc = 1. We use the

Gaussian elimination (see [Beu94], page 116) to write

M =

(
1 − b

d− bc
a

0 1

)
︸ ︷︷ ︸

=:L1

(
1 0
− c
a 1

)
︸ ︷︷ ︸

=:L2

(
a 0

0 d− bc
a

)
︸ ︷︷ ︸

=:D

.

We can construct the matrix D as a power of δ, because we have 1 = ad − bc =
a(d − bc

a ) and thus a−1 = d − bc
a . Furthermore a ∈ GF(q) and thus there exists a

natural number k such that ωk = a−1. It follows that D = δk.

As proven in Lemma 52 we can construct the matrix

τ1 =

(
1 ω
0 1

)
as a product of τ and δ. Let γ := − b

d− bc
a

. Then there exists an element l ∈ N such that

ωl = γ. If l = 2m is even, then we have τ δ
m

= L1, and if l = 2m+ 1 then τ δ
m

1 = L1,
where m ∈ N.

Similarly for β := c
a there exists a natural number r ∈ N such that ωr = β. Then

we define L̃2 := τ δ
n
, if r = 2n, and L̃2 := τ δ

n

1 , if r = 2n + 1, where n ∈ N. It is

L̃2 :=

(
1 c

a
0 1

)
. By conjugating with the matrix U we obtain

L̃2
U

=

(
1 0
− c
a 1

)
= L2.

Thus every matrix M ∈ SL(2, q) is a product of the matrices τ, δ and U and the claim
follows.

Those matrices are based on the standard generators of SL(n, q) as in [LGOB09],
page 841, but instead of U−1 we use U . This is needed since the relations of the
presentations in the next section are not fulfilled if we use U−1.

5.2. Presentations

Now we look at the different presentations for different groups SL(2, q) and PSL(2, q),
depending on q. Again we define some notation in order to make this section more
readable. The notation in Remark 54 is implicitly assumed throughout the rest of this
chapter.

Remark 54. Let q := pe, where p is an odd prime, 1 < e ∈ N and ω ∈ GF(q) a
primitive element.
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• Then we define the natural number k ∈ N as the smallest number such that
1 + ω = ωk. We define m := bk/2c ∈ N and the map f : GF(q) → GF(q), t 7→
1 + t− tk.

• Also g : GF(q) → GF(q) is a map such that g(ω2) = ω. The existence of this
map is proven in Lemma 52 (more specifically g(t) :=

∑e−1
i=0 ait

i as defined in
Equation 5.1). Furthermore we define µω : GF(q) → GF(q) as the minimal
polynomial of ω. The coefficients of all the defined polynomials are over GF(p).

• For a polynomial h(t) = akt
k + . . .+ a0 over GF(p) and a matrix τ ∈ GF(q)2×2,

there are different ways to evaluate the equation τh(t).

If we have defined a matrix τ1, then τh(t) :=
∏k
i=0 τ

ãi
i , where τ2i := τ δ

i
, if i is

even, and τ2i+1 = τ δ
i

1 , if i is odd.

If there exists no predefined matrix τ1, then τh(t) :=
∏k
i=0(τ δ

i
)ãi.

Sometimes all matrices τi, 0 ≤ i ≤ k are already explicitely specified. Then
τh(t) :=

∏k
i=0(τi)

ãi.

• Note that ãi is the smallest positive integer in the natural representation of GF(p)
in N.

We assume that the presentation in Theorem 100 of [CRW90] for the group PSL(2, q)
is correct. Note that the elements in Theorem 99 satisfy the relations of this presenta-
tion. Now we derive a presentation on the standard generators defined in Theorem 53
from this presentation.

Theorem 55 (Presentation of PSL(2, q), [LGOB19], Theorem 3.1). We assume the
requirements listed in Remark 54. Then PSL(2, q) has the presentation

{τ, δ, U | τ1 := τ g(t) =
e−1∏
i=0

(τ δ
i
)ãk ; (τU)3 = (Uδ)2 = U2 = (τ1Uδ)

3 = δ(q−1)/2

= τp = [τ, τ1] = [τ1, τ
δ] = τµ(t) = 1,{

τ δ
m

= ττ1 and τ δ
m

1 = τ1τ
δ, if 1 + ω ∈ GF(q)2,

τ δ
m

1 = ττ1 and τ δ
m+1

= τ1τ
δ, otherwise }.

Proof. We prove that this presentation is just a rewritten version of the presentation
in Theorem 100.

By simply replacing the generators in the theorem above with the generators w =
Uτ−1, x = τ , z = τδ−1 and y = τ g(t) for the polynomial g(t) over GF(p) such that
g(ω2) = ω holds, one obtains the relations

R := { (Uτ−1)3 = U2 = (Uδ−1)2 = (Uτ−1τ1τδ
−1)3 = τp = τp1 = (τδ−1)(q−1)/2

= [τ, τ1] = [τ1, (τ
δ)τ
−1

] = τµ(t) = τ
µ(t)
1 = 1,{

ττ1(τ δ
m

)−1 = τ1τ
δ(τ δ

m

1 )−1 = 1, if 1 + ω ∈ GF(q)2

ττ1(τ δ
m

1 )−1 = τ1τ
δ(τ δ

m+1
)−1 = 1, otherwise }.
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Using the relation U2 = 1 we obtain that (Uτ−1)3 = 1⇔ (τU)3 = 1. Also (Uδ−1)2 =
1 ⇔ (Uδ)2 = 1 for the same reason and we have Uδ = δ−1U . Then it follows with
[τ, τ1] = 1 that

(Uτ−1τ1τδ
−1)3 = (Uτ1δ

−1)3 = 1⇔ (Uτ1δ
−1)3U = U ⇔ U(τ1Uδ)

3 = U ⇔ (τ1Uδ)
3 = 1.

We have τp1 = (τ g(t))p = (
∏e−1
i=0 (τ δ

i
)ãi)p =

∏e−1
i=0 ((τp)δ

i
)ãi = 1, if the relation τp = 1

holds. Hence this relation is redundant. Now it follows with Lemma 8 that

(τδ−1)(q−1)/2 =

 q−1
2
−1∏

i=0

τ δ
i

 δ−
q−1
2 =

(
1
∑ q−1

2
−1

i=0 ω2i

0 1

)
δ−

q−1
2 = δ−

q−1
2 .

Thus we can replace the relation (τδ−1)
q−1
2 = 1 with δ

q−1
2 = 1.

The relation [τ1, (τ
δ)τ
−1

] = 1 is equivalent to [τ1, τ
δ] = 1, because τ and τ1 commute.

We can omit the relation τ
µ(t)
1 , because τµ(t) = 1, and it already follows that τ

µ(t)
1 =

τ g(t)µ(t) = (τµ(t))g(t) = 1. Thus this presentation is another presentation of the group
PSL(2, q).

We modify the presentation for PSL(2, q) to obtain a presentation for the group
SL(2, q).

Theorem 56 (Presentation of SL(2, q), [LGOB19], Theorem 3.2). We assume the
requirements that are established in Remark 54. Then a presentation for SL(2, q) is
given by replacing the relations

(τU)3 = 1, (Uδ)2 = 1, U2 = 1 and δ
q−1
2 = 1

by the relations

(τU)3 = U2, (Uδ)2 = U2, U4 = 1 and δ
q−1
2 = U2

in the presentation in Theorem 55. Thus a presentation of SL(2, q) is given by

{τ, δ, U | τ1 := τ g(t) =

e−1∏
i=0

(τ δ
i
)ãk ; (τU)3 = (Uδ)2 = δ(q−1)/2 = U2,

U4 = (τ1Uδ)
3 = τp = [τ, τ1] = [τ1, τ

δ] = τµ(t) = 1,{
τ δ

m
= ττ1 and τ δ

m

1 = τ1τ
δ, if 1 + ω ∈ GF(q)2,

τ δ
m

1 = ττ1 and τ δ
m+1

= τ1τ
δ, otherwise }.

This theorem is derived from [LGOB19], but the relation (τU−1)3 = U2 is replaced
with (τU)3. With this alternation we make sure that the generators of SL(2, q) of
Theorem 53 fulfil the presentation.
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Proof. The relations hold in SL(2, q) and we prove first that 〈U2〉 is the centre of the
presented group.

We have (U2)U = id ∈ 〈U2〉. The relations (Uδ)2 = U2 and U4 = 1 imply that

U2δ−1U2δ = 1⇔ U2δ−1 = δ−1U2 ⇔ (Uδ)2δ−1 = δ−1U2

⇔ δUδU = U2 ⇔ UδUδU4 = U6 ⇔ (Uδ)2 = U2.

Thus U2 and δ commute. Also τ · U2 = (τU−1)U−1 = (τU−1)U2 · U = (τU−1)4 · U =
U2τ · U−1 · U = U2τ , since U2 = U−2. Thus U2 and τ also commute.

Since U2 and δ commute, we have (Uδ)2 = U2 ⇔ UδU = U2δ−1 ⇔ U3δ = δ−1U3 ⇔
UδU2 = δ−1U3 ⇔ Uδ = δ−1U . Thus the proof of the relation (τ1Uδ)

3 = 1 for
Theorem 55 is still correct. All the other relations were obtained without using the
assumption that U2 = 1 and thus the presentation is correct.

If q ≡ 3 mod 4, then we can shorten the presentation for PSL(2, q). The origin of
the next theorem is Theorem 101.

Theorem 57 (Presentation of PSL(2, q) for q ≡ 3 mod 4, [LGOB19], Theorem 3.3).
We assume the requirements defined in Remark 54 and q ≡ 3 mod 4. If 1+ω ∈ GF(q)2,
then we define r := (q + 1)/4 and r := (q − 3)/4 otherwise. Then PSL(2, q) may be
presented by

{τ, δ, U | (τU)3 = (Uδ)2 = U2 = [τ, τ δ
(q+1)/4

] = τµ(t) = 1,

δ(q−1)/2 = τp, τ δ
m

= [τ−1, δr]}.

Proof. Again we use the presentation in Theorem 101 and substitute the elements
w, x, z with Uτ−1, τ, τδ−1. Then one obtains the relations

{(Uτ−1)3 = U2 = (Uδ−1)2 = τµ(t) = [τ, (τδ−1)(q+1)/4τ(τδ−1)−(q+1)/4] = 1,

(τδ−1)(q−1)/2 = τp, (τδ−1)mτ(τδ−1)−m

= τ(τδ−1)(−1)k(q+1)/4τ−1(τδ−1)(−1)k+1(q+1)/4},

where k := 2m+ 1.

Using the same arguments as in the proof of Theorem 55 we can replace the relations
(Uτ−1)3 = 1 and (Uδ−1)2 = 1 by the relations (τU)3 = 1 and (Uδ)2 = 1. Similarly we
have (τδ−1)(q+1)/4 = δ−(q+1)/4 and thus we replace [τ, (τδ−1)(q+1)/4τ(τδ−1)−(q+1)/4] =

1 with [τ, τ δ
(q+1)/4

] = 1. The relations (τδ−1)(q−1)/2 = τp can be replaced by δ(q−1)/2 =

τp, too. Likewise we have (τδ−1)mτ(τδ−1)−m = τ δ
m

and (τδ−1)(−1)k+1(q+1)/4 =

δ(−1)k(q+1)/4. If k is even, then we can replace this by δ(q+1)/4, otherwise by δ−(q+1)/4 =
δ(q−3)/4.

Again we modify the presentation of the last theorem to obtain a presentation for
SL(2, q) in the special case that q ≡ 3 mod 4.
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Theorem 58 (Presentation of SL(2, q) for q ≡ 3 mod 4, [LGOB19], Theorem 3.4).
We assume the requirements that are established in Remark 54. Then a presentation
for SL(2, q) is given by replacing the relations

(τU)3 = 1, (Uδ)2 = 1, U2 = 1 and δ
q−1
2 = 1

by the relations

(τU)3 = U2, (Uδ)2 = U2, U4 = 1 and δ
q−1
2 = τpU2

in the presentation in Theorem 57.

The proof of this theorem is equivalent to that of Theorem 56.
Now we want to find a presentation for the case that q = 2e and use the presentation

given in Theorem 102.

Theorem 59 (Presentation of SL(2, 2e), [LGOB19], Theorem 3.5). We assume the
requirements as defined in Remark 54 with the exception that p is equal to 2. Further-
more we define µω2 as the minimal polynomial of ω2 over GF(q). Then SL(2, 2e) has
the presentation

{τ, δ, U | (Uτ)3 = U2 = (Uδ)2 = (τδ)q−1 = τ2 = 1, τ δ
m

= [τ, δ], τµω2 (t) = 1}.

Proof. We use Theorem 102 to prove this theorem and substitute w, x, z with Uτ−1, τ
and τδ−1. Thus we obtain the relations

{(Uτ−1)3 = U2 = (Uδ−1)2 = (τδ)q−1 = τ2 = τµω2 (t) = τ f(t) = 1}.

Now we can replace (Uτ−1)3 = 1 and (Uδ−1)2 = 1 by the relations (Uτ)3 = 1 and
(Uδ)2 = 1 because U2 = 1. And similarly τ f(t) = 1 by ττ δτ δ

m
= 1⇔ τ δ

m
= [τ, δ].

We need a small lemma that helps us to prove the correctness of the next presenta-
tion, which provides short presentations for the groups SL(2, p) and PSL(2, p).

Lemma 60. Let 2, 3 6= p ∈ P be a prime number and ` := bp3c. Then ` is even for
p ≡ 1 mod 3 and odd otherwise.

Proof. We assume that p ≡ 1 mod 3. If ` would be odd, then we would find an element
k ∈ N such that ` = 2k+1 and thus p = 3`+1 = 3(2k+1)+1 = 6k+4 = 2(3k+2) /∈ P.
Thus ` must be even.

On the other hand we assume that p 6≡ 1 mod 3. We have p 6= 3, thus p ≡ 2 mod 3.
If ` would be even, then we would find an element k ∈ N such that ` = 2k and thus
p = 3`+ 2 = 3(2k) + 2 = 2(3k + 1) /∈ P. Consequentely the result follows.

The presentation on the generating set of Theorem 99 can be found in Theorem 103.
In the next theorem we state once again a modified version that is defined on the
standard generators.
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5. Special Linear Group SL(2, q)

Theorem 61 (Presentation of SL(2, p) and PSL(2, p), [CR80], Theorem 3.6). We
assume the requirements defined in Remark 54 and define ` := bp/3c. If p ≡ 1 mod 3
then SL(2, p) has the presentation

{τ, U | U2 = (UτU2)3, (U(τU2)4U(τU2)(p+1)/2)2(τU2)pU2l = 1},

else
{τ, U | U−2 = (U−1τ)3, (U−1τ4U−1τ (p+1)/2)2τpU−2l = 1}

A presentation for PSL(2, p) is given by adding the relation U2 = 1.

Proof. Let x :=

(
0 −1
1 0

)
and y :=

(
1 1
0 1

)
. We look at parts of the relations in

Theorem 103:

x2 =

(
−1 0
0 −1

)
=

((
0 −1
1 1

))3

=

((
0 −1
1 0

)(
1 1
0 1

))3

= (xy)3

and

(xy4xy(p+1)/2)2 =

((
0 −1
1 0

)(
1 4
0 1

)(
0 −1
1 0

)(
1 p+1

2
0 1

))2

=

((
0 −1
1 4

)(
0 −1

1 p+1
2

))2

=

(
−1 −p+1

2
4 1

)2

=

(
−1 0
0 −1

)
= − id .

Also yp = id, x2` = id for an even ` and x2` = − id otherwise. Thus the relation
(xy4xy(p+1)/2)2ypx2` = 1 only holds if ` is odd. It follows from Lemma 60 that the
relations are fulfilled for p 6≡ 1 mod 3.

Now assume that p ≡ 1 mod 3. If we set ỹ := −y and x̃ := −x then we obtain
(x̃ỹ4x̃ỹ(p+1)/2)2ỹpx̃2` = (xy4xy(p+1)/2)2(−yp)x2` = 1, because ` is even according to
Lemma 60. And also x̃2 = (x̃ỹ)3 ⇔ x2 = (xy)3, thus the relations in Theorem 103
hold.

Thus for p 6≡ 1 mod 3 we have x = U−1 and y = τ and x = U and y = τU2

otherwise. The matrices τ and U generate SL(2, p) and thus x and y generate SL(2, p).
By substituting x and y in Theorem 103, we obtain the presentations in this theorem.
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6. Special Unitary Group SU(3, q)

In this chapter we define unitary groups and present a generating set of the special
unitary group of degree 3 in Section 6.2. In Section 6.3 we give a presentation of
the special unitary group of degree 3 and prove its correctness in two steps. First we
analyse the subgroup of upper triangular matrices and give a presentation and then
we extend this presentation to obtain a presentation for the whole group.

6.1. Definition

Before we define the special unitary group, we need to define unitary forms and isome-
tries on a vector space V with a unitary form φ.

Definition 62 (Unitary Form, [Hup67], page 233). Let q ∈ N be a prime power, V a
GF(q2)-vector space and assume that · : GF(q2)→ GF(q2) is a field automorphism of
order 2. A map

φ : V × V → GF(q2), (v, w) 7→ φ(v, w)

is called a unitary form on V , if it is additive, i.e.

φ(au+ v, w) = aφ(u,w) + φ(v, w),

and

φ(u, v) = φ(v, u)

for all u, v, w ∈ V and a ∈ GF(q2).

Definition 63 (Isometrie, [Hup67], page 233). Let V be a GF(q2)-vector space, φ a
form on V and σ ∈ Aut(V ) an automorphism on V , such that φ(vσ, wσ) = φ(v, w) for
all v, w ∈ V . Then we call σ an isometry of V.

Now we can define the unitary group GU(V ) on a vector space V and its unitary
form φ. Additionally we define the special unitary group and the projective special
unitary group.

Definition 64 (Unitary Group, [Hup67], page 233). Assume that · is a field auto-
morphism of order 2 on the field GF(q2). Furthermore, let φ be a unitary form on
the GF(q2)-vector space. We call the group of isometries of V the unitary group
GU(V) and the subgroup GU∩SL(V ) the special unitary group SU(V). Addition-
ally we define the projective special linear group PSU(V) = SU(V )/Z(SU(V )),
where Z(SU(V )) is the centre of the special unitary group.
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6. Special Unitary Group SU(3, q)

The next definition defines the vector space and unitary form that we use throughout
the rest of this chapter.

Definition 65. We define · : GF(q2) → GF(q2), x 7→ xq as the Frobenius automor-
phism on GF(q2). Set V := GF(q2)n for n ∈ N, and define the unitary form

φ : V → V, (v, w) 7→ v


0 · · · 0 1
0 · · · 1 0
... . .

. ...
...

1 · · · 0 0

w,

where · is applied entry-wise. Then we write GU(n, q) instead of GU(V ) for the unitary
group and similarly SU(n, q) and PSU(n, q).

Note that we write SU(n, q) for the group of unitary matrices of determinant 1 of
degree n over the field GF(q2). This is a common notation.

Lemma 66. The centre of SU(3, q) is the subgroup

Z(SU(3, q) = {aI3 ∈ SU(3, q) | a ∈ GF(q2) with a3 = 1}.

Proof. It is Z(SU(3, q)) = Z(GL(n, q2)) ∩ SU(n, q) and [Hup67], page 177, states that
GL(n, q2) = {aIn | a ∈ GF(q2)×}. Let a ∈ GF(q2)× such that a3 = 1, then the matrix
aIn is unitary and of determinant 1, thus the claim holds.

We have defined all the groups that occur in this chapter. Before giving a generating
set of the group SU(3, q) in the following section, we look at some elements of the
special unitary group.

Throughout this chapter we frequently use the following notation.

Definition 67. For α, β ∈ GF(q2) we set

ν(α, β) :=

 1 α β
0 1 −αq
0 0 1

 and ∆(α) :=

 α 0 0
0 αq−1 0
0 0 α−q

 .

Note that det(ν(α, β)) = 1 and ∆(α) has determinant 1, if 0 6= α ∈ GF(q2). The
matrix ν(α, β) is a unitary matrix if the condition stated in the next lemma is satisfied.

Lemma 68. Let α, β ∈ GF(q2). The matrix ν(α, β), as defined in Definition 67, is a
unitary matrix if and only if tr(β) = −αq+1.

Proof. We know that det(ν(α, β)) = 1 for any α, β ∈ GF(q2). Thus we need to
show that φ(v · ν(α, β), w · ν(α, β)) = φ(v, w) for any v, w ∈ GF(q2)3 if and only if
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6.1. Definition

β + βq = −αq+1. Observe that

φ(v · ν(α, β), w · ν(α, β)) = φ(v, w)

⇔ v · ν(α, β)

 0 0 1
0 1 0
1 0 0

w · ν(α, β)
>

= φ(v, w)

⇔ v · ν(α, β)

 0 0 1
0 1 0
1 0 0

 ν(α, β)
> · w> = φ(v, w)

⇔ v

 1 α β
0 1 −αq
0 0 1

 0 0 1
0 1 0
1 0 0

 1 αq βq

0 1 −α
0 0 1

>w> = v

 0 0 1
0 1 0
1 0 0

w>

⇔ v

 1 α β
0 1 −αq
0 0 1

 0 0 1
0 1 0
1 0 0

 1 0 0
αq 1 0
βq −α 1

w> = v

 0 0 1
0 1 0
1 0 0

w>

⇔ v

 βq + αq+1 + β αq − αq 1
−α+ α 1 0

1 0 0

w> = v

 0 0 1
0 1 0
1 0 0

w>.

Hence φ(v · ν(α, β), w · ν(α, β)) = φ(v, w) if and only if β + βq = −αq+1.

Lemma 69. Every upper unitriangular matrix M ∈ SU(3, q) is of the form ν(α, β)
for some α, β ∈ GF(q2).

Proof. We define

M :=

 1 m1,2 m1,3

0 1 m2,3

0 0 1

 ∈ SU(3, q)

and, since M is unitary, it follows that

M

 0 0 1
0 1 0
1 0 0

M
>

=

 0 0 1
0 1 0
1 0 0


⇔

 m1,3 +mq+1
1,2 +m1,3 m1,2 +m2,3 1

m2,3 +m1,2 1 0
1 0 0

 =

 0 0 1
0 1 0
1 0 0


and the result follows directly.

We obtain from Lemma 68 that the matrices ν(α, β) defined in Definition 67 are
elements of the group SU(3, q) if tr(β) = −αq+1 (see Definition 10 and the subsequent
lemma for a definition of the trace). We want to show that the same holds for the
matrices ∆(α), if α 6= 0.
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Lemma 70. Let α ∈ GF(q2). The matrix ∆(α), as defined in Definition 67, is a
unitary matrix if and only if α 6= 0.

Proof. If α = 0, then ∆(0) 6∈ SU(3, q).
Let α 6= 0. Then it is easy to determine that det(∆(α)) = α0 = 1. We have

∆(α)

 0 0 1
0 1 0
1 0 0

∆(α)
>

=

 α 0 0
0 αq−1 0
0 0 α−q

 0 0 1
0 1 0
1 0 0

 αq 0 0

0 αq(q−1) 0
0 0 α−1


=

 0 0 α

0 αq(q−1) 0
α−q 0 0

 αq 0 0

0 αq(q−1) 0
0 0 α−1


=

 0 0 α0

0 α0 0
α0 0 0


and thus φ(v∆(α), w∆(α)) = φ(v, w) and ∆(α) is unitary and of determinant 1.

Since we need to multiply many upper unitriangular matrices in the following proofs,
we gather a few calculation rules in the next proposition.

Proposition 71. Let α, β, γ, δ ∈ GF(q2) and ν(α, β) as defined in Definition 67. Then
we have

ν(α, β)ν(γ, δ) = ν(α+ γ, β + δ − αγ).

Immediate results are

(1) ν(α, β)n = ν(nα, nβ − (n−1)n
2 αq+1) for any n ∈ N,

(2) ν(α, β)−1 = ν(−α, β) and

(3) ν(0, δ) commutes with every other matrix ν(α, β).

The proof of the last proposition can be verified easily by simple calculation except
for result (1).

Proof. We prove result (1).
Base Case: Let n := 1. Then the statement holds.
Induction Hypothesis: We assume that the statement holds for some n ∈ N.
Induction Step: Using the induction hypothesis, we obtain

ν(α, β)n+1 = ν(α, β)nν(α, β) = ν(nα, nβ − (n− 1)n

2
αq+1)ν(α, β)

= ν((n+ 1)α, (n+ 1)β − (n− 1)n

2
α− nαq+1)

= ν((n+ 1)α, (n+ 1)β − n(n+ 1)

2
α)

and we have shown that the statement holds for all n ∈ N.
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6.2. Generators

In this section we will define four matrices and show that they generate SU(3, q). This
is needed for the presentation of the group given in the next section.

We start by defining the matrices in Definition 72. For the proof that they form a
generating set of SU(3, q), which is given in Theorem 80 near the end of this section,
we need several lemmata in preparation. At the end of this section we show two
additional properties of the special unitary group that will be useful for the proof of
the correctness of the presentation in Section 6.3.

Definition 72. Let ω be a primitive element of GF(q2), ξ := (1 + ωq−1)−1, if q is
even, and ξ := −(1 + 1)−1 otherwise. Furthermore, define ζ := ω(q+1)/2. Using the
notation of Definition 67 we define the matrices

ν := ν(1, ξ), τ :=

{
ν(0, ζ), if q is odd

ν(0, 1), if q is even
,∆ := ∆(ω) and A :=

 0 0 1
0 −1 0
1 0 0

 .

In the remainder of this chapter we will use ω ∈ GF(q2) as a primitive element and
write −1/2 ∈ GF(q2) instead of −(1 + 1)−1. Furthermore, we will use the matrices
ν, τ,∆ and A without citing the definition each time.

Lemma 73. The matrices defined in Definition 72 are elements of SU(3, q).

Proof. We know by Lemma 70 that ∆ is a unitary matrix of determinant 1.
Let q be odd. Then −1/2 ∈ GF(q) and thus the element lies in the fixed field of the

map tr (see Lemma 11). It follows that ξ + ξq = −1/2 + (−1/2)q = −1. Furthermore,

ζ + ζq = ω
q+1
2 + ω

q(q+1)
2 = ω

q+1
2 (1 + ω

q2−1
2 ) = ω

q+1
2 (1 − 1) = 0. We obtain with

Lemma 68 that the matrices ν and τ are unitary and of determinant 1 if q is odd.
Now we assume that q is even. Then we have

ξ + ξq = (1 + ωq−1)−1 + (1 + ωq−1)−q = (1 + ωq−1)−1 + (1 + ωq(q−1))−1

= (1 + ωq−1)−1 + (1 + ω1−q)−1 = (1 + ωq−1)−1 + (1 + ω1−q)−1

= (1 + ω1−q + 1 + ωq−1)(1 + ω1−q + 1 + ωq−1)−1 = 1 = −1q+1

and 1 + 1q = 0, thus ν and τ are unitary matrices of determinant 1 if q is even.
We need to show that A lies in SU(3, q). We have det(A) = 1 and

A

 0 0 1
0 1 0
1 0 0

A
>

=

 0 0 1
0 −1 0
1 0 0

 0 0 1
0 1 0
1 0 0

 0 0 1
0 (−1)q 0
1 0 0


=

 1 0 0
0 −1 0
0 0 1

 0 0 1
0 (−1)q 0
1 0 0


=

 0 0 1
0 (−1)q+1 0
1 0 0

 ,
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6. Special Unitary Group SU(3, q)

since (−1)q+1 = 1 if q is odd, and −1 = 1 if q is even. Therefore we obtain that
φ(vA,wA) = φ(v, w) for all v, w ∈ GF(q2)3 and thus A is also a unitary matrix.

The next lemma uses the properties of unitary matrices of determinant 1 to deduce
that a matrix is already a triangular matrix if one special entry of the matrix is zero.

Lemma 74. Let M ∈ SU(3, q) be a unitary matrix of determinant 1 with m1,3 = 0.
Then M is a lower triangular matrix.

Proof. Let

M :=

 m1,1 m1,2 0
m2,1 m2,2 m2,3

m3,1 m3,2 m3,3

 ∈ SU(3, q).

Then we have

φ(vM,wM) = φ(v, w)

⇔ v

 m1,1 m1,2 0
m2,1 m2,2 m2,3

m3,1 m3,2 m3,3

 0 0 1
0 1 0
1 0 0

 m1,1 m2,1 m3,1

m1,2 m2,2 m3,2

0 m2,3 m3,3

w> = v

 0 0 1
0 1 0
1 0 0

w>

⇔ v

 0 m1,2 m1,1

m2,3 m2,2 m2,1

m3,3 m3,2 m3,1

 m1,1 m2,1 m3,1

m1,2 m2,2 m3,2

0 m2,3 m3,3

w> = v

 0 0 1
0 1 0
1 0 0

w>

for any v, w ∈ GF(q2)3.

It follows that m1,2m1,2 = 0⇒ m1,2 = 0 and m2,3m1,1+m2,2m1,2 = 0⇒ m2,3m1,1 =
0. We have det(M) = 1 andm1,3 = m1,2 = 0, hencem1,1 6= 0. Thus we obtainm2,3 = 0
and M is a lower triangular matrix.

In Theorem 80 we take an arbitrary matrix M ∈ SU(3, q) and write this matrix as a
product of the matrices defined in Definition 72. To achieve that, we want to multiply
M with a matrix B (which should also be a product of the matrices of the generating
set) to obtain a triangular matrix with the previous lemma.

The next lemmata show that we can write such a matrix B as a product of the
claimed generators. We need to differentiate between odd and even q.

Lemma 75. Let q be odd and M :=

 1 0 β
0 1 0
0 0 1

 ∈ SU(3, q) with tr(β) = 0. Then

there exist a0, . . . , ak ∈ N such that M =
∏q−1
i=0 (τ∆i

)ai.
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Proof. We have

τ∆i
=

 ω−i 0 0

0 ω−i(q−1) 0
0 0 ωiq

 1 0 ζ
0 1 0
0 0 1

 ωi 0 0

0 ωi(q−1) 0
0 0 ω−iq


=

 1 0 ω−i(q+1)ζ
0 1 0
0 0 1

 .

(6.1)

We define K as the smallest subfield of GF(q2) which contains {ω−i(q+1)ζ | i ∈ Z}.
With |ωq+1| = q − 1 it follows that ωq+1 is a primitive element of GF(q). Hence

ω
q+1
2 ∈ K is not in GF(q). But K is a subfield of GF(q2) and the largest non-trivial

subfield of GF(q2) is GF(q), thus we obtain K = GF(q2).

Therefore every element β ∈ GF(q2) can be written as a sum β =
∑q−1

i=1 aiω
−i(q+1)ζ

and it follows with Equation 6.1 that M =
∏q−1
i=1 (τ∆i

)ai .

Lemma 76. Let q be even and M ∈ SU(3, q). Then there exists a matrix B ∈
〈ν, τ,∆, A〉 such that MB is a lower triangular matrix.

Proof. We use that

ν∆i
τ∆j

= ν(ωi(q−2), ω−i(q+1)ξ)ν(0, ω−j(q+1))

= ν(ωi(q−2), ω−i(q+1)ξ + ω−j(q+1))
(6.2)

holds for i, j ∈ N.

If m1,1 = 0, then we set M (2) := MA and m
(2)
1,3 = 0. Using Lemma 74, M (2) is a

lower triangular matrix.

If m1,1 6= 0, then we can choose i, j ∈ N such that ν∆i
τ∆j

= ν(−m1,2m
−1
1,1, β) ∈

SU(3, q) for some β ∈ GF(q2), which follows from Equation 6.2. We set M (1) :=

M · ν(−m1,2m
−1
1,1, β) and m

(1)
1,2 = 0.

If m
(1)
1,3 = 0, then M (1) is already a lower triangular matrix. Otherwise we choose

k, l ∈ N such that ν∆k
τ∆l

= ν(α,−m(1)
1,3m

(1)
1,1) ∈ SU(3, q) for some α ∈ GF(q2). We set

M (2) := M (1) · ν(α,−m(1)
1,3m

(1)
1,1). Then m

(2)
1,3 = 0 and M (2) is a lower triangular matrix

with Lemma 74.

In the previous two lemmata we have shown that we can multiply any matrix M ∈
SU(3, q) by a product of the matrices defined in Definition 72 and obtain a lower
triangular matrix.

Lemma 77. Let M ∈ SU(3, q) be a lower triangular matrix. Then MA is an upper
triangular matrix.
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Proof. We set M :=

 m1,1 0 0
m2,1 m2,2 0
m3,1 m3,2 m3,3

 . Then

MA =

 0 0 1
0 −1 0
1 0 0

 m1,1 0 0
m2,1 m2,2 0
m3,1 m3,2 m3,3

 0 0 1
0 −1 0
1 0 0


=

 m3,1 m3,2 m3,3

−m2,1 −m2,2 0
m1,1 0 0

 0 0 1
0 −1 0
1 0 0


=

 m3,3 −m3,2 m3,1

0 m2,2 −m2,1

0 0 m1,1


and the result follows.

We have shown that we can use the matrix A to convert a lower triangular matrix
into an upper triangular matrix. The next step is to show that any upper triangular can
be transformed into an upper unitriangular matrix (by multiplication with elements
of Definition 72) and that any upper unitriangular unitary matrix of determinant 1 is
already in SU(3, q).

Lemma 78. Let M ∈ SU(3, q) be an upper triangular matrix. Then there exists a
number k ∈ N such that ∆−kM is an upper unitriangular matrix.

Proof. Let M :=

 m1,1 m1,2 m1,3

0 m2,2 m2,3

0 0 m3,3

 ∈ SU(3, q). Similarly to Lemma 74 we use

that M is a unitary matrix of determinant 1 to analyse the diagonal entries of M .

For any v, w ∈ GF(q2)3 we have

φ(vM,wM) = φ(v, w)

⇔ v

 m1,1 m1,2 m1,3

0 m2,2 m2,3

0 0 m3,3

 0 0 1
0 1 0
1 0 0

 m1,1 0 0
m1,2 m2,2 0
m1,3 m2,3 m3,3

w> = v

 0 0 1
0 1 0
1 0 0

w>

⇔ v

 m1,3 m1,2 m1,1

m2,3 m2,2 0
m3,3 0 0

 m1,1 0 0
m1,2 m2,2 0
m1,3 m2,3 m3,3

w> = v

 0 0 1
0 1 0
1 0 0

w>

Thus we obtain m3,3m1,1 = m2,2m2,2 = m1,1m3,3 = 1.

We have m1,1 ∈ GF(q2), hence there exists an element k ∈ N such that m1,1 = ωk.
Then we can conclude that

m1,1m3,3 = 1⇔ m3,3 = ωk
−1
⇔ m3,3 = ω−kq.
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Furthermore there exists an element r ∈ N0 such that m2,2 = ωr. Then

m2,2m2,2 = ωrωrq = ωr(q+1) = 1⇔ ωr(q+1) = ω0

and we can conclude that r ∈ (q − 1)N0.
We also know that det(M) = m1,1m2,2m3,3 = ωkm2,2ω

−kq = 1 ⇔ m2,2 = ωk(q−1).
Consequently

∆(ω)−kM =

 ω−k 0 0

0 α−k(q−1) 0
0 0 αkq

 ωk m1,2 m1,3

0 ωk(q−1) m2,3

0 0 ω−kq


=

 ω0 ω−km1,2 ω−km1,3

0 ω0 ω−k(q−1)m2,3

0 0 ω0


and the result follows.

Lemma 79. Let M ∈ SU(3, q) be an upper unitriangular matrix. Then M ∈ 〈ν, τ〉〈ν,τ,∆〉.

Proof. We know from Lemma 69 that there exist α, β ∈ GF(q2) such that M = ν(α, β).
Additionally we have

ν∆i
τ∆j

= ν(ωi(q−2), ω−i(q+1)ξ)ν(0, ω−j(q+1))

= ν(ωi(q−2), ω−i(q+1)ξ + ω−j(q+1))
(6.3)

for i, j ∈ N. Since the matrix in Equation 6.3 is a product of matrices in SU(3, q), it
also lies in SU(3, q). For an arbitrary but fixed i, the first argument of ν in Equation 6.3
is fixed. There are q possible values for the second argument depending on j.

We choose i such that ωi(q−2) = α, which is valid since ωq−2 has order q2 − 1 and
generates GF(q2)×. For any α ∈ GF(q2), there exist q elements β ∈ GF(q2) such that
−αq+1 = β + βq. Thus we can choose j such that ω−i(q+1)ζ + ω−j(q+1) = β and the
result follows.

Since we have shown that any upper triangular matrix can be written as a product
of a power of ∆ and an upper unitriangular matrix (which lies already in SU(3, q)),
we only need to summarise all the previous lemmata to prove that the matrices in
Definition 72 form a generating set of SU(3, q).

Theorem 80. Let ω be a primitive element of GF(q2), ξ := 1/(1+ωq−1), if q is even,
and ξ := −1/2 otherwise. Furthermore define ζ := ω(q+1)/2. Using the notation in
Definition 67 we define the matrices

ν := ν(1, ξ), τ :=

{
ν(0, ζ), if q is odd

ν(0, 1), if q is even
, ∆ := ∆(ω) and A :=

 0 0 1
0 −1 0
1 0 0


Then 〈ν, τ,∆, A〉 = SU(3, q).
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Proof. It follows from Lemma 73 that 〈ν, τ,∆, A〉 ⊆ SU(3, q) holds.
We need to show the other inclusion and prove that every matrix M in SU(3, q) can

be written as a product of ν, τ,∆ and A.

• If q is odd and m3,3 6= 0, then we have shown in Lemma 75 that we can construct

a matrix B :=

 1 0 β
0 1 0
0 0 1

 with β := −m1,3

m3,3
as a product of τ and ∆. We

obtain that
M (1) = BM ∈ SU(3, q)

is a unitary matrix of determinant 1 with m
(1)
1,3 = 0. With Lemma 74 we can

thus conclude that M (1) is a lower triangular matrix.

If q is even, we know by Lemma 76 that we can write M (1) := BM for a matrix
B ∈ 〈ν, τ,∆, A〉 where M (1) is a lower triangular matrix.

• Now we deduce from Lemma 77 that

M (2) := (M (1))A ∈ SU(3, q)

is an upper triangular matrix.

• With Lemma 78 it follows that there exists a natural number k ∈ N such that

M (3) := ∆−kM (2) ∈ SU(3, q)

is an upper unitriangular matrix.

• Lemma 79 states that
M (3) ∈ 〈ν, τ〉〈ν,τ,∆〉.

We have shown that M can be written as a product of ν, τ,∆ and A, hence M ∈
〈ν, τ,∆, A〉 and 〈ν, τ,∆, A〉 = SU(3, q).

After having obtained a generating set for SU(3, q), we define the subgroup of all
upper triangular matrices H ≤ SU(3, q) and examine its order. The reader might know
that H is a Borel subgroup of the special unitary group SU(3, q). In the next section
we state a presentation for this subgroup and extend it to obtain a presentation for
SU(3, q).

Lemma 81. The subgroup H := 〈ν, τ,∆〉 ⊆ SU(3, q) is the group of all upper trian-
gular unitary matrices of determinant 1 of order (q2 − 1)q3, where the matrices are
defined as in Theorem 80.

Proof. From Lemma 78 and Lemma 79 we obtain that every upper triangular matrix
can be written as a product of ν, τ and ∆. Furthermore ν, τ and ∆ are upper triangular
matrices and thus H is the subgroup of all upper triangular matrices of SU(3, q).
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Any upper triangular matrix M is equal to ∆kM (1) for a natural number k ∈ N
and an upper unitriangular matrix M (1) according to Lemma 78. Lemma 69 states
that there exist α, β ∈ GF(q2) such that M (1) = ν(α, β), where ν is defined as in
Remark 67.

Since M has determinant 1, none of the diagonal entries can be zero and thus
k ∈ {1, . . . ,GF(q)2 − 1}. It follows that there are q2 − 1 different possible values for
the diagonal entries.

It holds that β + βq = −αq+1. Since −αq+1 ∈ GF(q), there exist q elements β ∈
GF(q2) for any α ∈ GF(q2), such that β + βq = −αq+1 (this follows from Lemma 11).

Thus there are (q2 − 1)q3 different upper triangular matrices M ∈ SU(3, q) and the
result follows.

The next result is needed to prove the correctness of the presentation of SU(3, q)
which is obtained by extending the presentation of the subgroup H.

Lemma 82. Let ν, τ,∆ and A as in Theorem 80 and U := 〈ν, τ〉H , D := 〈∆〉, L :=
{A} and H := 〈ν, τ,∆〉 the Borel subgroup as in Lemma 81. Then SU(3, q) is the
disjoint union of the sets UDLU and H.

Proof. We have UDLU,H ⊆ SU(3, q), thus UDLU ∪H ⊆ SU(3, q). Let M ∈ H, then
M is an upper triangular matrix. But

ν(α, β)∆kAν(γ, δ) =

 ω−qkβ −ω(q−1)kα+ ω−qkβγ ωk + ω(q−1)kαγq + ω−qkδβ

−ω−qkαq −ω(q−1)k − ω−qkαqγ +ω(q−1)kγq − ω−qkδαq
ω−qk ω−qkγ ω−qkδ


(6.4)

for any α, β, γ, δ ∈ GF(q2) and k ∈ N. Thus M 6∈ UDLU . For every matrix N ∈
UDLU , we have n3,1 6= 0, thus N 6∈ H and UDLU and H are disjoint.

The order of GU(n, q) is q
n2−n

2
∏n
i=1(qi − (−1)i) (see [Nie19], Theorem 5.34). Let

M ∈ GU(3, q), then we have det(M) det(M
>

) = 1 since M is unitary. We define
λ := det(M), then it follows that λq+1 = 1.

Let λ = ωk ∈ GF(q2) such that λ ∈ Ker(f) (see Lemma 12). Then it follows from
the proof of Lemma 12, that k = m(q − 1) for some m ∈ N. Thus we can write

the matrix

 1 0 0

0 ωm(q−1) 0
0 0 1

 ∈ GU(3, q) and it follows that there exists a matrix

M ∈ SU(3, q) for any λ ∈ Ker(f). Since f is a homomorphism, we obtain the order

| SU(n, q)| = |GU(n, q)|
q + 1

.

Thus |SU(3, q)| = q3(q2 − 1)(q3 + 1). Since |H| = q3(q2 − 1) (see Lemma 81) and
H and UDLU are disjoint, we need to show that there are at least |SU(3, q)| − |H| =
q6(q2 − 1) elements in |UDLU |.

Now let M ∈ UDLU be an arbitrary matrix. Then M is equal to the structure of
the matrix in Equation 6.4. The entry m3,1 is different for 1 ≤ k ≤ q2 − 1. Since
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ν(α, β) ∈ SU(3, q) implies that −αq+1 = β + βq, we obtain that for every α ∈ GF(q2)
there are q possibilities for β. The same holds for γ and δ. If k, α, β, γ and δ are fixed,
then the matrix M is already determined. Hence |UDLU | = (q2 − 1)q6.

Consequently |UDLU ∪H| = | SU(3, q)| and the result follows.

6.3. Presentation

In this section we will prove the correctness of a presentation of SU(3, q), which is given
in [LGOB19], Section 4.2.2. Our proof follows this paper by defining and proving the
correctness of a presentation of the subgroup H = 〈ν, τ,∆〉 of order (q2−1)q3 first (see
Lemma 81). Afterwards this presentation is extended to a presentation of the whole
group SU(3, q).

6.3.1. Presentation of H

Before starting with a presentation of the subgroup H of SU(3, q) we cite two lemmata
which will be used for the proof of the correctness of the presentation.

Lemma 83 ([Gur+08], Lemma 4.23). If pe =: q 6= 2, 3, 5 for a prime p and ω ∈ GF(q2)
a primitive element, then there exist integers x and y such that

(1) ωx(q−2) + ωy(q−2) = 1

(2) ω−x(q+1) + ω−y(q+1) = 1

(3) GF(p)[ωx(q+1)] = GF(q)

(4) GF(p)[ωx(q−2)] is equal to GF(q2) or GF.

Proof. The proof of this lemma can be found in [Gur+08], where ω−x and ω−y are
replaced by elements a, b ∈ GF(q2).

Lemma 84 ([Gur+08], Lemma 4.5). Let U0 and W0 be subgroups of a group G, and
let u,w, a, b be elements of G satisfying the following conditions:

(1) [a, b] = 1

(2) 〈u, ua, U0〉 = 〈u, ub, U0〉 = 〈ua, ub, U0〉

(3) 〈w,wa,W0〉 = 〈w,wb,W0〉 = 〈wa, wb,W0〉

(4) [ua, w] = [ub, w] = 1

(5) U0 and W0 are normalised by 〈a, b〉

(6) [U0, w] = [u,W0] = 1.

Then [〈{uc | c ∈ 〈a, b〉}〉, 〈{wc | c ∈ 〈a, b〉}〉] = 1.
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Please refer to [Gur+08] for a proof of the last lemma. Now we have done all the
preparation. The next theorem gives a presentation of the subgroup H defined in
Lemma 81.

Theorem 85 ([LGOB19], Section 4.2.1). The set

{ν, τ,∆ | R1 ∪R2 ∪R3}

is a presentation of a subgroup H < SU(3, q), where q = pe for a prime p, ω ∈ GF(q2)
is a primitive element and ω0 = ωq+1 ∈ GF(q).

The relations in R1 are

(1) ∆q2−1 = 1

(2) a := ∆x and b := ∆y for x and y satisfying Lemma 83

(3) νp = 1, if p is odd, and ν2 = τ , if p is even

(4) τp = 1,

the relations in R2 are

(1) τ = τaτ b and, if p is odd, then τ = τ bτa

(2) if e > 1, then τµ1(a) = 1, where µ1 is the minimal polynomial of ω−x0 over GF(p)

(3) if e = 1 or gcd(x, q2 − 1) > 1, then τ∆ = τµ2(a), where µ2 is a polynomial of
degree at most e− 1 over GF(p) and ω−1

0 = µ2(ω−x0 ).

We define W := 〈τ〉〈ν,τ,∆〉 as the normal closure of τ in the subgroup H and then the
relations in R3 are

(1) ν = νaνbw1 for some w1 ∈W and, if p is odd, then ν = νbνaw2 for some w2 ∈W

(2) [νa, τ ] = [νb, τ ] = 1

(3) [ν, νa] = w3 for some w3 ∈W

(4) if p is even and e > 1, then [ν∆, νa] = w4 and [ν∆, νb] = w5 for some w4, w5 ∈W

(5) νµ3(a) = w6 for some w6 ∈W , where µ3 is a minimal polynomial of ωx(q−2) over
GF(p)

(6) if p is odd and gcd(x, q2 − 1) > 1, then ν∆ = νµ4(a)w7 for some w7 ∈ W , where
µ4 is the polynomial of degree at most 2e − 1 over GF(p) satisfying ωq−2 =
µ4(ωx(q−2)),
otherwise, if p is even, then ν∆2

= νµ5(a)ν∆µ6(a)w7 for some w7 ∈ W , where µ5

and µ6 are polynomials of degree at most e − 1 over GF(p) satisfying ω2q−4 =
µ5(ωx(q−2)) + ωq−2µ6(ωx(q−2)).
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Note that Bp(a) for elements B and a and a polynomial p is defined as in Remark 54.

We can identify the generators in Theorem 85 with the matrices in Theorem 80.

Proof. Let G be the presented group and H the subgroup of Lemma 81. We will prove
that G is isomorphic to H and define U := 〈ν, τ〉H as the normal subgroup of H that
contains all upper unitriangular matrices in H and W := 〈τ〉H as the normal closure
of τ . We follow Proposition 18 and prove first that the map

ϕ : G→ H, τ 7→ τ, ν 7→ ν,∆ 7→ ∆

is a well-defined surjective homomorphism.

Relations R1 Relation (1) is satisfied, because GF(q2)× has order q2 − 1. Relation
(2) actually defines new generators and the existence of numbers x and y is shown in
Lemma 83.

For odd p we obtain with Lemma 71 that ν(1, ξ)p = ν(p, pξ − p2−p
2 ) = id, because

the characteristic of the field is p. If p is even, we have ν2 = ν(2, 2ξ−1) = ν(0, 1) = τ .

For odd p, we have τp = ν(0, pζ) = id and for even p we obtain τp = ν(0, p) = id.
Thus relations (3) and (4) are satisfied.

Relations R2 We obtain with Lemma 83 that

τaτ b = ∆−xτ∆x−yτ∆y

=

 1 0 ζω−x(q+1)

0 1 0
0 0 1

 1 0 ζω−y(q+1)

0 1 0
0 0 1


=

 1 0 ζ(ω−x(q+1) + ω−y(q+1))
0 1 0
0 0 1

 = τ.

Similarly τ bτa = id, hence relation (1) holds.

If e > 1, then we define µ1 : GF(q2) → GF(q2), x 7→
∑e

i=0 cix
i as the minimal

polynomial of ω−x0 over GF(p). Then, with Remark 54, we obtain

τµ1(a) =

 1 0 ζ
∑e

i=0 ciω
−ix(q+1)

0 1 0
0 0 1

 =

 1 0 ζµ1(ω−x0 )
0 1 0
0 0 1

 = id,

thus relations (2) holds.
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Let µ2 : GF(q2) → GF(q2), x 7→
∑e−1

i=0 dix
i be a polynomial over GF(q) such that

ω−1
0 = µ2(ω−x0 ). Then

τµ2(a) =

 1 0 ζ
∑e−1

i=0 diω
−ix(q+1)

0 1 0
0 0 1

 =

 1 0 ζµ2(ω−x0 )
0 1 0
0 0 1


=

 1 0 ζω−1
0

0 1 0
0 0 1

 = τ∆.

Relations R3 The set W := 〈τ〉H is the set of all matrices M ∈ SU(3, q) of the form

M =

 1 0 β
0 1 0
0 0 1

 for β ∈ GF(q2) with tr(β) = 0. This follows from Lemma 75,

because we have τν = τ . We also need Lemma 71 and ν∆x
= ν(ωx(q−2), ω−x(q+1)ξ),

which can be easily checked.

We know that

νaνb = ν(ωx(q−2), ω−x(q+1)ξ) · ν(ωy(q−2), ω−y(q+1)ξ)

= ν(ωx(q−2) + ωy(q−2), ω−x(q+1) + ω−y(q+1) − ωx(q−2)+yq(q−2))

= ν(1, 1− ω(x+yq)(q−2)) = ν · w1

for a matrix w1 ∈W . Thus relation (1) holds.

We check that relation (2) is satisfied and obtain

[νa, τ ] = (τνa)−1νaτ = (ν(0, ζ)ν(ωx(q−2), ω−x(q+1)ξ))−1 · ν(ωx(q−2), ω−x(q+1)ξ)ν(0, ζ)

= ν(ωx(q−2), ζ + ω−x(q+1)ξ)−1 · ν(ωx(q−2), ω−x(q+1)ξ + ζ) = id .

Similarly, we obtain [νb, τ ] = id.

We have

[ν, νa] = (νaν)−1ννa

= (ν(ωx(q−2), ω−x(q+1)ξ)ν(1, ξ))−1 · ν(1, ξ)ν(ωx(q−2), ω−x(q+1)ξ)

= ν(ωx(q−2) + 1, ω−x(q+1)ξ + ξ − ωx(q−2))−1 · ν(1 + ωx(q−2), ξ + ω−x(q+1)ξ − ωx(1−2q))

= ν(−ωx(q−2) − 1,−(ωx(q−2) + 1)q+1 − ω−x(q+1)ξ − ξ + ωx(q−2))

·ν(1 + ωx(q−2), ξ + ω−x(q+1)ξ − ωx(1−2q))

= ν(0, γ) ∈W

for some γ ∈ GF(q2), thus relation (3) holds.
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Assuming that p is even and e > 1, we obtain

[ν∆, νa] = (νaν∆)−1ν∆νa

= (ν(ω(q−2)x, ω−(q+1)xξ)ν(ω(q−2), ω−(q+1)ξ))−1 · ν(ω(q−2), ω−(q+1)ξ)ν(ω(q−2)x, ω−(q+1)xξ)

= ν(ω(q−2)x + ω(q−2), ω−(q+1)xξ + ω−(q+1)ξ − ω(q−2)xω(1−2q))−1

·ν(ω(q−2) + ω(q−2)x, ω−(q+1)ξ + ω−(q+1)xξ − ω(q−2)ω(1−2q)x)

= ν(0, γ) ∈W

similarly to the calculation in relation (3). Analogously we have [νa, ν∆] ∈W and we
obtain that the relations in (4) hold for the matrices ν, τ and ∆.

Let µ3 : GF(q)→ GF(q), x 7→
∑e−1

i=0 cix
i be the minimal polynomial of ωx(q−2) over

GF(p) (note that GF(p)[ωx(q−2)] = GF(q) as stated in Lemma 83). We follows that
νa = ν(ωx(q−2), ω−x(q+1)ξ) and thus νa

i
= ν(ωix(q−2), ω−ix(q+1)ξ). Then we obtain

νµ3(a) =

e−1∏
i=0

(νa
i
)c̃i =

e−1∏
i=0

ν(ωix(q−2), ω−ix(q+1)ξ)c̃i

=

e−1∏
i=0

ν(c̃iω
ix(q−2), c̃iω

−ix(q+1)ξ − c̃i
2 − c̃i

2
ωix(q−2)(q+1))

= ν(µ(ωx(q−2)), γ) ∈W

for some γ ∈ GF(q2) and relation (5) holds.

Let p be odd, gcd(x, q2 − 1) > 1 and µ4 : GF(q2) → GF(q2), x 7→
∑2e−1

i=0 cix
i a

polynomial over GF(p) such that µ4(ωx(q−2)) = ωq−2. Then

νµ4(a) =
e−1∏
i=1

(νa
i
)c̃i = ν(µ(ωx(q−2)), γ)

= µ(ωq−2, γ) = ν∆w7

similarly to relation (5) for some w7 ∈W,γ ∈ GF(q2), since ν∆ = ν(ωq−2, ω−q−1ξ).

If p is even, then we define µ5 : GF(q2)→ GF(q2) and µ6 : GF(q2)→ GF(q2) as poly-
nomials over GF(p) with degree at most e−1 such that µ5(ωx(q−2))+ωq−2µ6(ωx(q−2)) =
ω2q−4. Thus we obtain again

νµ5(a)ν∆µ6(a) = ν(µ5(ωx(q−2)), γ1)ν(µ6(ωx(q−2))ωq−2, γ2)

= ν(µ5(ωx(q−2)) + µ5(ωx(q−2)ωq−2), γ3) = ν(ω2q−4, γ3)

= ν∆2
w7

for some γ1, γ2, γ3 ∈ GF(q2) and w7 ∈ W , since ν∆2
= ν(ω2q−4, ω−2q−2ξ). Thus the

relations in (6) hold.
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We have shown now that the relations R1∪R2∪R3 hold for the matrices ν, τ,∆ ∈ H
and thus the epimorphism ϕ is well-defined. Now we want to show that this epimor-
phism is already an isomorphism and prove this by considering the order of the gen-
erated group G. Lemma 81 states that H has order q3(q2− 1), hence we need to show
that the order of the presented group G equals that of H.

We define Ũ := {〈ν, τ〉c | c ∈ 〈a, b〉} and W̃ := 〈τ〉G, such that Ũ and W̃ are normal
subgroups of G, and define Z := ŨW̃ /W̃ . With relations R3(1) and R3(2) we obtain
that

[ν, τ ] = ν−1τ−1ντ = ν−bν−aτνaνbτ = 1,

thus W̃ = 〈τ c | c ∈ 〈∆〉〉. Applying Lemma 84 with U0 = W0 = 〈1〉, u = w = τ and
a = ∆x, b = ∆y, we obtain that

[〈τ c | c ∈ 〈a, b〉〉, 〈τ c | c ∈ 〈a, b〉〉] = 1.

If gcd(x, q2 − 1) = 1, then we have ∆ ∈ 〈a〉. Otherwise it follows from relation R2(3)
that τ∆ ∈ 〈τ c | c ∈ 〈a, b〉〉 and thus 〈τ c | c ∈ 〈a, b〉〉 = W̃ is abelian.

We set u = w = ν, a = ∆x, b = ∆y, U0 = W0 = W̃ and check the conditions for
Lemma 84. We have [∆x,∆y] = 1, 〈ν, νa, W̃ 〉 = 〈ν, νb, W̃ 〉 = 〈νa, νb, W̃ 〉 and W̃ is
normalized by 〈a, b〉, since W̃ is normalized by ∆. The relation [νa, ν] = [νb, ν] = 1 is
implied by relation R3(3). We have shown that ν and τ commute and thus [W̃ , ν] = 1
and the conditions are satisfied. It follows that

[〈νc | c ∈ 〈a, b〉〉, 〈νc | c ∈ 〈a, b〉〉] = 1.

If gcd(x, q2 − 1) = 1, then we already know that ∆ ∈ 〈a〉 and [〈νc | c ∈ 〈∆〉〉, 〈νc | c ∈
〈∆〉〉] = 1. Otherwise it follows from relation R3(6) that ν∆ = νµ4(a)w7 for some
element w7 ∈W and a polynomial µ4(a).

It follows that Z is abelian and that we can write Z = 〈νc | c ∈ 〈a〉〉W̃/W̃ (note
that c ∈ 〈a, b〉 implies that c ∈ 〈a〉 is implied by relation R3(1)). The elements ν and
τ have order p and thus the order of every element in Z is a power of p. Hence Z is
also elementary abelian.

We apply Lemma 83 again with u = τ , w = ν, U0 = 〈1〉 and W0 = W̃ and obtain

[〈τ c | c ∈ 〈a, b〉〉, 〈νc | c ∈ 〈a, b〉〉] = 1,

thus W̃ E Ũ .

Odd Characteristic p Relation R3(6) states that ν∆ = νµ4(a)w7 for an element w7 ∈
W and µ4 a polynomial of degree at most 2e − 1, if gcd(x, q2 − 1) > 1. Otherwise
we already know from Lemma 83 that there exists a polynomial of degree smaller or
equal to 2e− 1 such that the same relation holds. Hence every element z ∈ Z can be
written as a product

z = ũw̃W̃ = ũW̃ = (νa
0
)`0(νa

1
)`1 · · · (νa2e−1

)`2e−1W̃ ,
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where `i ∈ N. Since ν has order p, we can deduce that there are p2e = q2 elements in Z.
Similarly we can follow from relation R2(2) and R2(3) that W̃ has order pe = q. Hence
it is Z = Ũ/W̃ , where W̃ E Z. And thus |Z| = |Ũ |/|W̃ | ⇔ q2 = |Ũ |/q ⇔ |Ũ | = q3.
Since Ũ = 〈ν, τ〉G, we obtain |〈ν, τ〉G| = q3.

Even characteristic p The minimal polynomial of ωx(q−2) has order e, since
GF(p)[ωx(q−2)] = GF(q) (see Lemma 83), hence we can use relation R3(5) in a similar
way as above and obtain that Z has order q. Setting u = ν, w = ν∆ and U0 = W0 = W̃
we can deduce with Lemma 84 that Z and Z∆ commute. It also holds that (z1z

∆
2 )∆ ∈

Z ⊕ Z∆ for any z1, z2 ∈ Z because of relation R3(6). Consequently ∆ normalises
Z ⊕ Z∆. We apply Lemma 84 again with u = τ, w = ν, U0 = 〈1〉 and W0 = W̃ and
obtain

[〈{τ c | c ∈ 〈a, b〉}〉, 〈{νc | c ∈ 〈a, b〉}〉] = 1.

Hence 〈ν, τ〉G normalizes W̃ .
We obtain that Z⊕Z∆ = 〈ν, τ〉G/W̃ , |Z⊕Z∆| = q2, |W̃ | = q and hence |〈ν, τ〉G| =

q3.

Relation R1(1) defines the order of 〈∆〉 as q2−1 and Ũ EG. Let x ∈ Ũ ∩〈∆〉. Then

we have x ∈ U , thus xp
d

= 1 for some d ∈ N. But p - q2 − 1, thus d = 0 and then x is
already 1. It follows that Ũ o 〈∆〉 = G and |G| = |U ||∆| = q3(q2 − 1).

We have shown that the presented group G has the same order as the subgroup H
defined in Lemma 81 and knowing that ϕ is an epimorphism, we obtain that ϕ is an
isomorphism and the presented group G is isomorphic to the subgroup H. Hence the
correctness of the presentation is proven.

6.3.2. Additional Relations for the Presentation of SU(3, q)

After having proven a presentation of the subgroup H, we want to extend this presen-
tation in the remainder of this chapter to obtain a presentation for the whole group
SU(3, q). The proof of the extension follows [LGOB19], Section 4.2.2, which itself
follows [HS11].

We start by defining relations called P (u) of the form uA = uLdAuR, where uL, uR ∈
U and d ∈ D depend on the upper unitriangular matrix u ∈ U . Note that U is the
subgroup of upper unitriangular matrices in SU(3, q).

Lemma 86. Let ν(α, β) = u ∈ U be an upper unitriangular matrix in SU(3, q).
Then the matrices uL := ν(−α, β−q, β−1) ∈ U , uR := ν(−αβ−1, β−1) ∈ U and d :=
diag(β−q, βq−1, β) ∈ 〈∆〉 =: D fulfil the relation uA = uLdAuR.

Proof. This can be easily verified by multiplying the matrices.

Next we define a group G via a presentation on four elements. We can deduce
by observing the relations that the subgroup H is isomorphic to a subgroup of the
presented group G.
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Definition 87 (Presentation of SU(3, q), [LGOB19], page 14, and [HS11]). Let q = pe

be a prime power and P (u) the relation uA = uLdAuR for u, uL, uR ∈ U and d ∈ D
as in Lemma 86. Then we define the group

G := 〈ν, τ,∆, A | R(1), R(2),∆A = ∆−q, A2 = 1〉,

where R(1) are the relations defined in Theorem 85 and R(2) ⊆ {P (u) | u ∈ U}.

Definition 88. Let R(2) ⊆ {P (u) | u ∈ U} be a set of relations as in Lemma 86.
Then we define V ⊆ U as the maximum set such that every relation P (u) for u ∈ V
is implied by the relations in R(2).

The next threorem states that the group G defined in Definition 87 is isomorphic
to the special unitary group SU(3, q) if certain conditions hold. More precisely G ∼=
SU(3, q) if every relation P (u) is implied from R(2) for any u ∈ SU(3, q).

Theorem 89. We assume that G is the presented group of Definition 87 and V ⊆ U
as in Definition 88. If V = U\{1}, then G is isomorphic to SU(3, q).

Proof. Let H̃ ≤ G be the group presented in Theorem 85, Ũ := 〈ν, τ〉H̃ , D̃ := 〈∆〉 and

L̃ := {A} subgroups of the group G. Additionally, let U,D and L be the equivalents
in the matrix group SU(3, q) (see Lemma 86 and L := {A}).

If V = U \{1}, then a relation uA = uLdAuR is implied by R(2) for every u ∈ U \{1}.
Thus ŨD̃L̃Ũ ∼= UDLU , since U ∼= Ũ and D ∼= D̃. The set H̃ ∪ ŨD̃L̃Ũ is a subgroup
of G since id ∈ H̃ and it is closed under multiplication: Let a, b ∈ H̃, then ab ∈ H̃. Let
a = uA1 , b = uA2 ∈ ŨD̃L̃Ũ , then ab = (u5u6)A ∈ H̃ ∪ ŨD̃L̃Ũ . Let a = uA1 ∈ ŨD̃L̃Ũ and
b ∈ H̃, then there exist u2, u3 ∈ Ũ , d ∈ D̃ such that b = u2du3 = (u2dA id)(id idAu3) =
uA4 for some u4 ∈ Ũ and hence ab = (u1u4)A ∈ H̃ ∪ ŨD̃L̃Ũ .

Furthermore all generators ν, τ,∆, A are in H̃ ∪ ŨD̃L̃Ũ , and thus we obtain G =
H̃ ∪ ŨD̃L̃Ũ ∼= H ∪ UDLU = SU(3, q) with Lemma 82.

With the last theorem we have given a presentation of the special unitary group
SU(3, q) and have proven its correctness. Since the obtained presentation is not yet
short (as defined in Section 2.2), we show that only a limited number of relations P (u)
is needed.

A few properties of the set V and elements in GF(q2) are stated in the subsequent
lemmata.

Lemma 90. The set V , as defined in Definition 88, is closed under conjugation by
∆. If u, v ∈ V and uR and vL as in Lemma 86, then uv ∈ V if and only if uRvL ∈ V .

Proof. Let u ∈ V , then there is a relation uA = uLdAuR in R(2). It follows with
∆A = ∆−q and since U is closed under conjugation with ∆ that

(u∆)A = (uA)∆A
= ∆quLdAuR∆−q = ũL∆−qdA∆qũR = ũL ∆−qdAA∆−1︸ ︷︷ ︸

∈D

AũR.

Thus u∆ ∈ V .
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Let u, v ∈ V with uA = uLdAuR and vA = vLd
′AvR for a number k ∈ N. Then

(uRvL)A = ũLd̃AũR if and only if

(uv)A = uAvA = (uLdAuR)(vL∆kAvR) = uLdA(AuRvLA)d′AvR = ũLd̃AvR

since ∆A ∈ 〈∆〉.

Lemma 91. Let β, η ∈ GF(q2) with tr(β), tr(η) 6= 0. There exists an element γ ∈
GF(q2)× with tr(γ) = 0 and β + γ ∈ GF(q)×η.

Proof. We define t := tr(β) tr(η)−1 and set γ := tη − β. Then we have tr(γ) =
t tr(η) − tr(β) = 0, since tr is GF(q)-linear. Furthermore tq = tr(β)q tr(η)−q = (β +
βq)q(η + ηq)−q = tr(β) tr(η)−1 = t, thus t ∈ GF(q)× and β + γ = tη ∈ GF(q)×η.

Lemma 92. Let β ∈ GF(q2)× \GF(q) and α ∈ GF(q2) such that ν(α, β) ∈ SU(3, q).
If q ≡ 2 mod 3, then the cardinality of

{ν(α, β)∆i | i ∈ N}

is (q + 1)/3, and q2 − 1 otherwise.

Proof. We have ν(α, β)∆i
= ν(αωi(q−2), βω−i(q+1)). The cardinality of the defined set

is equal to the smallest natural number k ∈ N such that k(q − 2) ≡ −k(q + 1) mod
q2− 1. Let q ≡ 2 mod 3. Then q− 2, q+ 1 ≡ 0 mod 3 and thus 3|gcd(q− 2, q+ 1) and,
since 3|q2 − 1, the cardinality of the set is (q2 − 1)/3. On the other hand we assume
that q 6≡ 2 mod 3. Then gcd(q − 2, q + 1) = 1, thus k = q2 − 1.

The following two theorems show that we can reduce the number of relations in
R(2) to 3 relations, if q 6≡ 2 mod 3, and 7 relations, otherwise.

Theorem 93 (Presentation of SU(3, q), [LGOB19], page 14). Suppose that q 6≡ 2 mod
3. Let β0 = ωζ. Pick α0 ∈ GF(q2) such that αq+1

0 = − tr(β0). By Lemma 91 there
exists γ0 with tr(γ0) = 0 and β0 + γ0 ∈ GF(q)×ω−1ζ.

Let ν0 = ν(α0, β0), τ0 = ν(0, γ0) and Û = {ν0, τ0, ν0τ0}. If R(2) = {P (u) | u ∈ Û},
then G is isomorphic to SU(3, q).

Proof. Again we define V as in Definition 88 and know that if V = U \ {1}, then the
result follows. We define

Ui := {ν(α, β) | β ∈ GF(q)×ω−iζ, αq+1 = tr(β)} ⊂ U

for i ∈ {0, . . . , q}. Then the Ui are disjoint and it follows that

ν(α, β)∆ = ν(αωq−2, βω−(q+1)) (6.5)

and for β ∈ GF(q)×ω−iζ we obtain that βω−(q+1) ∈ GF(q)×ω−iζ, since ω−(q+1) ∈
GF(q)×. Thus each Ui is normalised by 〈∆〉.

There are q − 1 elements in U0 (since tr(β) = a tr(ζ) = 0 for β ∈ GF(q)×ζ, a ∈
GF(q)× and thus α = 0) and q2 − 1 elements in every Ui for i ∈ {1, · · · , q} (see
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Lemma 92) and since the sets are disjoint, we have | ∪qi=0 Ui| = |U \ {1}|. Hence the
sets Ui form a partition on U \ {1}.

Let i := 0. We can deduce from Equation 6.5 that the order of {τ∆i

0 | i ∈ N} is
q − 1. Since tr(γ0) = 0, we obtain that τ0 ∈ U0. Knowing that U0 and V are closed
under conjugation (see Lemma 90) it follows that {τ∆i

0 | i ∈ N} ⊆ U0. Since both sets
have the same order, they are already equal. Thus U0 ⊆ V .

Now we assume i := 1. We obtain

|{(ν0τ0)∆i | i ∈ N}| = q2 − 1

with Lemma 92 and since ν0τ0 = ν(α0, β0 + γ0) and β0 + γ0 ∈ GF(q)×ω−1ζ, we have
ν0τ0 ∈ U1. Similarly to the first case we can follow that {(ν0τ0)∆i | i ∈ N} ⊆ U1 and,
for reasons of cardinality, both sets are equal.

Now let i ∈ {1, . . . , q − 1} and assume that Ui ⊂ V . We set η := ω−iζ and, since
tr(η) 6= 0 6= tr(β0), we can apply Lemma 91. We obtain that there exists an element
γ ∈ GF(q2)× such that β0 + γ ∈ GF(q)×ω−iζ and tr(γ) = 0.

By Lemma 11 it follows that there exist q − 1 elements γ ∈ GF(q2)× such that
tr(γ) = 0. Since |U0| = q − 1 we have ν(0, γ) ∈ U0 ⊆ V . Further we obtain that
γ ∈ GF(q)×ζ.

Lemma 90 states that ν0ν(0, γ) ∈ V if and only if (ν0)Rν(0, γ)L ∈ V (see also
Lemma 86). Hence we can derive that (ν0)Rν(0, γ)L = ν(−α0β

−1
0 , β−1

0 )ν(0, γ−1) =
ν(−α0β

−1
0 , β−1

0 + γ−1) ∈ V .
Furthermore β0ζ ∈ GF(q)×ωζ and thus β−1

0 +γ−1 = (β0+γ)(β0γ)−1 ∈ GF(q)×ω−(i+1)ζ.
Then ν(−α0β

−1
0 , β−1

0 + γ−1) ∈ Ui+1 and since ∆ normalises Ui+1 and

|{ν(−α0β
−1
0 , β−1

0 + γ−1)∆i | i ∈ N}| = q2 − 1

(see Lemma92), it follows that Ui+1 ∈ V .
Consequently V = U \ {1} and the result follows.

Corollary 94 ([LGOB19], page 15). Suppose that q ≡ 2 mod 3. Let β0 = ωζ. For
0 ≤ i ≤ 2 pick αi ∈ ωi(GF(q2)×)3 such that αq+1

i = − tr(β0). By Lemma 91 there
exists γ0 ∈ GF(q2)× with tr(γ0) and β0 + γ0 ∈ GF(q)×ω−1ζ.

Let νi = ν(αi, β0), τ0 = ν(0, γ0) and Û = {νi, τ0, νiτ0 | 0 ≤ i ≤ 2}. If R(2) =
{P (u) | u ∈ Û}, then G is isomorphic to SU(3, q).

Proof. Let α0 ∈ GF(q2) such that ν(α0, β0) ∈ SU(3, q). Then we obtain that ν(α1, β0)
and ν(α2, β0) are matrices in SU(3, q) for α1 := αωq−1 and α2 := αω2(q−1). Since
q − 1 ≡ 1 mod 3, ωq−1 is not a cube in GF(q2)× and the αi lie in different cosets of
(GF(q2)×)3 in GF(q2)×. Possibly after swapping the indices, we obtain the αi of this
theorem.

We define the Ui for i ∈ {0, . . . , q} as in Theorem 93. Now it follows with Lemma 92,
that the action of ∆ on the Ui divides the set into three orbits for i > 0. For two
matrices ν(α, β), ν(γ, δ) ∈ Ui those matrices are in one orbit if and only if α and γ are
in the same coset of (GF(q2)×)3.

Now we follow the proof of Theorem 93 and obtain the result.
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We have obtained short presentations for the special unitary group SU(3, q). For
completeness, we cite the presentations for the remaining special cases.

Theorem 95 ([LGOB19], page 15). A presentation for SU(3, 3) is given by

{ν, τ,∆, A | ν3 = 1, A2 = 1, ∆−1ν−1∆−1τ−1ν∆2ν−1 = 1, ∆−1ν∆−1τ−1ν−1∆2ν = 1,

τA∆−2(τA)2 = 1, ∆τ−1ν−1A∆τ−1ν∆Aντ−1A = 1}.

Theorem 96 ([LGOB19], page 15). A presentation for SU(3, 5) is given by

{ν, τ,∆, A | ν5 = 1, ∆τ2∆−1τ = 1, ∆2ν2∆−2ν−1 = 1, ∆5A∆A = 1, ∆−1νAν−2Aν∆A = 1,

∆ν∆−1τ−1ν−1∆ν−1∆−1ν = 1, ν−1Aτ−1ν−1A∆−1ν2A∆ν−1A∆τ−1 = 1}.

Theorem 97 ([LGOB19], page 15). A presentation for SU(3, 2) is given by

{ν, ν ′,∆, A | a := [ν,A], b := a2ν , aν = b−1, bν = a∆, aν
′

= aba,

bν
′

= ab∆, ν2 = ν ′2 = [ν, ν ′], A = ν2a2b}.

Theorem 98 ([LGOB19], page 16). Assume that a presentation for SU(3, q) is given.
Then a presentation for PSU(3, q) is obtained by adding the relation ∆q2−1.

Proof. We have shown in Lemma 66 that the centre of SU(3, q) contains all matrices
of the form aI3 with a ∈ GF(q2) and a3 = 1. Thus |Z(SU(3, q))| = |{a ∈ GF(q2) | a3 =
1}| = gcd(q + 1, 3) and the result follows.
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The presentations given in the previous chapters are implemented in GAP and the
code and documentation can be found in [Ahr]. For each presentation there exists a
function that takes a varying number of matrices M1, . . . ,Mk (or other elements that
may be multiplied and inverted) and a natural number d ∈ N as arguments. The
number d specifies the field over which the matrices are defined or the degree of the
group. The function checks whether the matrices satisfy the relations of the particular
presentation and returns true if the group 〈M1, . . . ,Mk〉 is isomorphic to the presented
group and false otherwise.

As an example, we look at the signature of the function for the presentation of the
group SU(3, q) with q 6= 2, 3, 5. It is of the form

Bool : IsSU3( v, tau, delta, t, field ).

The function IsSU3 checks whether v, tau, delta and t generate a group that is
isomorphic to SU(3, q) where q equals field.

For the implementation of the presentations it is crucial to consider that the given
matrices M1, . . . ,Mk are possibly of large dimension. If the matrix dimensions are
large, then a single matrix multiplication might already be a very expensive computa-
tion. Additionally, we need to keep in mind that memory space is limited. These two
limitations sometimes oppose each other. I analyse this conflict in the next sections.

7.1. Runtime Optimisation

There are two different approaches for optimising the runtime of the code. The first
approach is to look at the problem from the mathematical side and try to reduce
the length of the presentations (see Section 2.2). We have done this in the previous
chapters successfully by obtaining short presentations.

The second approach is to analyse the problem from a computational viewpoint. I
give an example for efficient computational optimisation in this section.

7.1.1. Square-and-Multiply Algorithm

The Square-and-Multiply Algorithm is a way to efficiently calculate powers of an
arbitrary element a. The naive way to obtain an would be to compute

an = a · a · · · a︸ ︷︷ ︸
n times
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for n ∈ N. Thus we need n − 1 multiplications to calculate an and the program has
linear runtime. In our case, the element a is a - possibly huge - matrix and thus linear
runtime is not acceptable.

Another way to compute an is by looking at the binary representation of n. Let
n = (bk . . . b0)2. Then we obtain an = a2bk · · · a2b0 . Since bi ∈ {0, 1}, we can calculate
squares of a iteratively (a, a2, a4, a8, . . .) and multiply them together to obtain an.

See the code for the exact procedure of the algorithm.

# Calculates a^n in an efficient way by using square and multiply.

SquareAndMultiply := function( a, n )

local exponents, current, result, i;

# Calculates the binary representation of n and stores it in a list.

exponents := CoefficientsQadic( n, 2 );

current := a;

result := a^0;

# Calculates powers 2^i of a by calculating squares of a iteratively.

# Multiplies the result by a^(2^i) if exponents[i] = 1.

for i in [ 1 .. Length( exponents ) ] do

if ( exponents[i] = 1 ) then

result := result * current;

fi;

# Set current = a^(i+1)

current := current^2;

od;

return result;

end;

The runtime of the Square-and-Multiply Algorithm is logarithmic since we need at
most 2 log2(n) multiplications to compute an for any element a. Refer to books like
[Ott12] for background knowledge about measuring the runtime of an algorithm.

I have applied the idea of this algorithm several times to improve the efficiency of my
code, e.g. for the presentation of the symmetric group. Relations of the presentation
are V n and (UUV

j
)2 for 2 ≤ j ≤ n/2, see Theorem 28. In my code, I compute

which powers V j I have to remember in order to calculate V d as a product of those
powers. Then, I obtain V j by multiplying V j−1 · V (since I need to obtain every V j

for 2 ≤ j ≤ n/2) and multiply them directly to obtain V d.

# First we calcate which values v^j should be remembered for the

# calculation of v^d.

powersToRemember := CoefficientsQadic( d, 2 );
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for i in [ 1 .. Length( powersToRemember ) ] do

if powersToRemember[i] <> 0 then

powersToRemember[i] := 2^(i-1);

fi;

od;

# Now we calculate v^j and remember it if necessary.

remember[1] := v;

remember[2] := e; # This is the neutral element of multiplication.

for i in [ 2 .. (d - (d mod 2))/2 ] do

remember[1] := remember[1] * v;

if ( i in powersToRemember ) then

remember[2] := remember[2] * remember[1];

fi;

if ( ( u * u^(remember[1]) )^2 <> e ) then

...

fi;

od;

7.2. Memory Consumption

In many of the obtained presentations specific generator products are used multiple
times in various relations, for instance at the relations of the presentation of SU(3, 5)
in Theorem 96. For example, the matrices ∆2, ν2, ν−1, τ−1 and ∆−1 are frequently
used and recomputation is expensive. But storing every reusable matrix is likely to
cause memory problems.

Hence, it is important to consider in advance whether to store a matrix product or
recompute it later.

Here again, there exists a way to optimise the storage usage. Assume a presentation
that contains the relations y−1z3 = 1, x4y−1z = 1, x2yz = 1 and yz2 = 1. Note that I
randomly chose these relations. It makes sense to verify the relations in such an order
that the memory usage is minimised. See Figure 7.2 for a possible order of verification.
The left-most column indicates the steps of the program, the right-most column states
the relation that is being verified in this particular step and the columns in between
illustrate the memory allocation.

After sorting the relations to obtain an optimal order, the function with the largest
memory consumption needed to save a maximum of 12 matrices at the same time.
The computation time was not affected by those changes. The memory consumption
of the functions for the presentations of SU(3, q), PSU(3, q) and SL(2, q) are listed in
Figure 7.2 and Figure 7.2 examplarily.
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Time Slot 1 Slot 2 Slot 3 Slot 4 Relation

0 x y z
1 x2 y z x2yz = 1
2 x4 y z y−1 x4y−1z = 1
3 z2 y z y−1 yz2 = 1
4 z3 y−1 y−1z3 = 1

Figure 7.1.: Examplary program flow and its memory allocation. The column Time
denotes the steps of the program, the columns Slot x contain the current
allocation of the memory space and the column Relation denotes which
relation is checked.

Group Memory (Number Of Matrices)

SU(3, q) 12
PSU(3, q) 12
SU(3, 2) 9
SU(3, 3) 8
SU(3, 5) 9

Figure 7.2.: Memory consumption of the different presentations of SU(3, q) and
PSU(3, q). The number indicates the maximum number of matrices stored
simultaneously.

Presentation for Memory (Number of Matrices)

q = pe, p odd and e > 1 9
q = pe, p odd and e > 1 and q ≡ 3 mod 4 5

p an odd prime and p ≡ 1 mod 3 7
p an odd prime and p 6≡ 1 mod 3 6

q = 2e 3
q = 2 2

Figure 7.3.: Memory consumption of the different presentations of SL(2, q). The num-
ber indicates the maximum number of matrices stored simultaneously.
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This thesis has obtained short presentations for the symmetric group, the group of
signed permutation matrices of determinant 1, the special linear group of degree 2,
the special unitary group of degree 3 and related groups. The implementation of those
presentations shows that only a limited number of matrix multiplications and memory
space is needed. Hence, we have obtained a way to verify group isomorphisms for
the analysed groups with an acceptable computational effort, and we can apply the
implementations in the matrix group recognition project.

In future work it would be interesting to obtain and implement short presentations
for the other finite classical and related groups (see [LGOB19]) to extend the number
of groups for which we can test for isomorphy.
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A. Original Presentations of SL(2, q)

In this chapter we list a generating set and presentations for SL(2, q) and PSL(2, q)
that are obtained from [CRW90] and [CR80].

The following theorem lists four matrices that generate the special linear group of
degree 2. The subsequent theorems give different presentations on the generating set
in Theorem 99 for special cases of SL(2, q) and PSL(2, q). Please refer to [CRW90] or
[CR80] for proofs of the correctness of those presentations.

Theorem 99 ([CRW90], Chapter 2). Let ω ∈ GF(q) be a primitive element and

w :=

(
0 −1
1 −1

)
, x :=

(
1 1
0 1

)
, y :=

(
1 ω
0 1

)
, z :=

(
ω ω−1

0 ω−1

)
.

Then w, x, y, z ∈ SL(n, q) and those matrices generate SL(n, q).

Proof. We will show that every matrix in Theorem 53 can be generated by the matrices
w, x, y and z by following [LGOB19], Chapter 3. We have τ = x and

z−1x =

(
ω−1 −ω−1

0 ω

)(
1 1
0 1

)
= δ. Also wx =

(
0 −1
1 −1

)(
1 1
0 1

)
= U . Thus

〈τ, δ, U〉 ⊆ 〈w, x, y, z〉.
On the other hand w, x, y, z ∈ SL(2, q) and thus the generated group is isomorphic

to SL(2, q).

Theorem 100 (Presentation of PSL(2, q), [CRW90], Theorem 2.2). We assume the
requirements listed in Remark 54. Then PSL(2, q) has the presentation

{w, x, y, z | w3 = (wx)2 = (wz)2 = (wyz)3 = xp = yp = z(q−1)/2 = [x, s1] = [y, s2]

= sµ(t) = stµ(t) = sf(t) = stf(t) = 1},

where s2i := zixz−i and s2i+1 := ziyz−i for 1 ∈ N.

Theorem 101 (Presentation of PSL(2, q) for q ≡ 3 mod 4, [CRW90], Theorem 2.4).
We assume the requirements defined in Remark 54 and q ≡ 3 mod 4. Then PSL(2, q)
may be presented by

{w, x, z | w3 = (wx)2 = (wz)2 = sµ(t) = [x, zlxz−l] = 1,

z
q−1
2 = xp, zb

k
2
cxz−b

k
2
c = xz(−1)klx−1z(−1)k+1l},

where l := q+1
4 and s2i := zixz−i and s2i+1 := ziyz−i.
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Theorem 102 (Presentation of SL(2, 2e), [CRW90], Theorem 3.2). We assume the
requirements as defined in Remark 54 with the exception that p is now equal to 2. Then
SL(2, 2e) has the presentation

{w, x, z | w3 = (wx)2 = (wz)2 = zq−1 = x2 = sµ(t) = sf(t) = 1}.

Observe that the si for the relation sµ(t) = 1 are not defined. Thus sµ(t) =∏k
i=0(τ δ

k
)ãi for the minimal polynomial µ : GF(q) → GF(q), x 7→

∑k
i=0 aix

i over
GF(p).

Theorem 103 (Presentation of SL(2, p), [CR80], Chapter 3). We assume the require-
ments defined in Remark 54 and define l := bp/3c. Then SL(2, p) has the presentation

{x, y | x2 = (xy)3, (xy4xy(p+1)/2)2ypx2l = 1}.
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